2020cv顶会 阅读ing笔记

目录

 

AugFPN: Improving Multi-scale Feature Learning for Object Detection

 EfficientDet: Scalable and Efficient Object Detection

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networksmotivation: sacle up the ConvNet for better acc and efficiency at the same time

Dynamic Convolutions: Exploiting Spatial Sparsity for Faster Inference

Dynamic Convolution: Attention over Convolution Kernels

D2Det: Towards High Quality Object Detection and Instance Segmentation

FCOS: Fully Convolutional One-Stage Object Detection

GhostNet: More Features from Cheap Operations

Split to Be Slim: An Overlooked Redundancy in Vanilla Convolution


AugFPN: Improving Multi-scale Feature Learning for Object Detection

      针对FPN融合前,融合时,融合后得三个缺陷做出改进

 

 

 EfficientDet: Scalable and Efficient Object Detection

贡献:BiFPN:为将被融合的特征分配不同的、通过学习得到的权重

          轻量化模型:EfficientNet+BiFPN+compound scale

细节:BiFPN设计思路:

              ①移除只有一个input edge的node,因为这样的input对信息融合没有帮助

              ②同一层的input直接加给同一层的output

              ③将②作为一个layer进行堆叠

           网络规模大小:

               考虑了网络的 width, depth, and resolution 三要素进行调参,得出最适合的网络大小

 

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
motivation: sacle up the ConvNet for better acc and efficiency at the same time

solution: balance all dim of width/depth/resolution of network

details:

通过超参数φ来uniform这三个维度,其中α、β、γ是常量。第一步先固定φ=1,选出最优的α、β、γ;第二步再固定α、β、γ,调试φ得出最好的值

 

Dynamic Convolutions: Exploiting Spatial Sparsity for Faster Inference

想看的不是这篇文章,看错了。

文章提出了只在总要的图片部位做卷积,可以降低计算量。重不重要是通过Gate来判断,而Gate是通过Gumbel-Softmax来训练得到的。

 

Dynamic Convolution: Attention over Convolution Kernels

动态卷积:在不增加网络深度或宽度的情况下增加模型的表达能力

思路:根据输入图像,自适应地调整卷积参数。如图1所示,静态卷积用同一个卷积核对所有的输入图像做相同的操作,而动态卷积会对不同的图像(如汽车、马、花)做出调整,用更适合的卷积参数进行处理。简单地来说,卷积核是输入的函数。

参数的学习步骤如图2所示:

 

D2Det: Towards High Quality Object Detection and Instance Segmentation

贡献:dense local regression用于回归目标框

          discriminative RoI pooling用于分类

方法:对于Faster RCNN,它会理所当然地把得到的ROI feature作为整体传入全连接层,计算类别和位置。但是在D2Det中,它把ROI feature划为k*k个大小的特征点,对每一个特征点都进行回归计算,一共做了k平方次。在此基础上,引入一个矢量M,对于proposals 的区域和ground truth区域发生重合的,才认为是有效的区域(在M矩阵中设置为1,否则设置为0),在有效区域内的特征点,计算出来的偏移矢量。最后对所有的偏移矢量做平均,得到最终的调整参数。

          discriminative RoI pooling则是先对RoI对应的每个bin按照RoI的长宽比例的倍数进行整体偏移(同样偏移后的位置是小数,使用双线性差值来求),然后再pooling

 

FCOS: Fully Convolutional One-Stage Object Detection

提出了一种全卷积的anchor-free模型。其实这样的anchor-free工作准确来说应该叫anchor box-free,并且提出的方法基本可以称之为anchor point工作。比如这篇FCOS,其实就比anchor box based的方法少了IoU计算,制作gt的时候能快些,至于网络学习,其实还是box regression,和带box的是一样的,另外在post process也没有体现出多少优势,还是要用NMS来处理预测的bbox,但这个以及同期的工作的确表明了anchor free(感觉还是anchor point更准确)方法的前景。

 

GhostNet: More Features from Cheap Operations

Ghost Module则分为两步操作来获得与普通卷积一样数量的特征图(这里需要强调,是数量一样)。

第一步:少量卷积(比如正常用32个卷积核,这里就用16个,从而减少一半的计算量)

第二步:cheap operations,如图中的Φ表示,Φ是诸如3*3的卷积,并且是逐个特征图的进行卷积(Depth-wise convolutional)。

 

Split to Be Slim: An Overlooked Redundancy in Vanilla Convolution

作者提出了一个 SPConv 的模块,用来降低常规卷积中的冗余信息。在该模块中,所有的输入通道按比例α分为两部分:representative部分用 k*k的卷积提取重要信息;redundant部分用1*1  的卷积补充细节信息。如下图所示:

 

 

作者认为,representative 部分仍可能存在冗余,因此,可以进一步拆分。因此,作者使用使用group-wise和point-wise卷积分别处理,再将结果融合。

 

 

 


 


 

 

 

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值