XDOJ1036--神奇的盒子

Description

  WM平时喜欢在夜晚游历于花丛、土堆等新校区隐蔽的角落,因为他觉得那样可以见到某些平时见不到的东西,找到某些比较稀奇的物品。随着其长期的寻觅,他终于找到了一个外表精美但上了锁的盒子,盒子没有锁眼,只有刻在上面的3对半数字:(1,1)、(4,5)、(7,15)和那个独立的数字100。
WM将盒子带回实验室,和ZYF一起研究,经过商议与复杂的推算,他们认定这些以(x,y)形式出现的数值就是传说中的拆分数(即将x变为一系列数连加,而不同的加法式子的数目就是其拆分数y),只要得到100的拆分数就能打开这个盒子。
例如,对于3,其不同的连加式有3个,即:3 = 1 + 1 + 1,3 = 1 + 2,3 = 3。式子1 + 2与式子2 + 1视为相同的式子。
WM和ZYF决定编写一个程序来计算给定正整数的拆分数,从而可以打开这个盒子,看看里头到底有什么秘密。

Input

输入数据的第一行是一个正整数T(1≤T≤100),表示有T组待测数据,每组待测数据占一行,是一个正整数N(1≤N≤100)。

Output

对于每组输入数据,输出一个整数表示N的拆分数,输出每个整数后换行。

Sample Input

3
1
4
7

Sample Output

1
5
15

 

解题思路:

显然是在考察整数划分,下面对整数划分作一个介绍(参考:http://www.cnblogs.com/hoodlum1980/archive/2008/10/11/1308493.html

 

所谓整数划分,是指把一个正整数n写成如下形式:

       n=m1+m2+...+mi; (其中mi为正整数,并且1 <= mi <= n),则{m1,m2,...,mi}为n的一个划分。

       如果{m1,m2,...,mi}中的最大值不超过m,即max(m1,m2,...,mi)<=m,则称它属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);

例如但n=4时,他有5个划分,{4},{3,1},{2,2},{2,1,1},{1,1,1,1};

       注意4=1+3 和 4=3+1被认为是同一个划分。

       该问题是求出n的所有划分个数,即f(n, n)。下面我们考虑求f(n,m)的方法;

---------------------------------------------------------------------

                                           (一)递归法

        ---------------------------------------------------------------------

 根据n和m的关系,考虑以下几种情况: 

       (1)当 n = 1 时,不论m的值为多少(m > 0 ),只有一种划分即 { 1 };

        (2)  当 m = 1 时,不论n的值为多少,只有一种划分即 n 个 1,{ 1, 1, 1, ..., 1 };

(3)  当 n = m 时,根据划分中是否包含 n,可以分为两种情况:

              (a). 划分中包含n的情况,只有一个即 { n };

              (b). 划分中不包含n的情况,这时划分中最大的数字也一定比 n 小,即 n 的所有 ( n - 1 ) 划分。

              因此 f(n, n) = 1 + f(n, n-1);

        (4) 当 n < m 时,由于划分中不可能出现负数,因此就相当于 f(n, n);

        (5) 但 n > m 时,根据划分中是否包含最大值 m,可以分为两种情况:

               (a). 划分中包含 m 的情况,即 { m, { x1, x2, ..., xi } }, 其中 { x1, x2, ..., xi } 的和为 n - m,可能再次出现 m,因此是(n - m)的 m 划分,因此这种划分

                     个数为 f(n-m, m);

               (b). 划分中不包含 m 的情况,则划分中所有值都比 m 小,即 n 的 ( m - 1 ) 划分,个数为 f(n, m - 1);

              因此 f(n, m) = f(n - m, m) + f(n, m - 1);

 

         综合以上情况,我们可以看出,上面的结论具有递归定义特征,其中(1)和(2)属于回归条件,(3)和(4)属于特殊情况,将会转换为情况(5)。而情况(5)为通用情况,属于递推的方法,其本质主要是通过减小m以达到回归条件,从而解决问题。其递推表达式如下:

         f(n, m) =      1;                                        ( n = 1 or m = 1 )

                            f(n, n);                                 ( n < m )

                            1+ f(n, m - 1);                      ( n = m )

                            f(n - m, m) + f(n, m - 1);       ( n > m )

---------------------------------------------------------------------

                                         (二)母函数法

        ---------------------------------------------------------------------

        下面我们从另一个角度即“母函数”的角度来考虑这个问题。

        所谓母函数,即为关于x的一个多项式G(x):

        有 G(x)= a0 + a1*x + a2*x^2 + a3*x^3 + ...

        则我们称G(x)为序列(a0,a1,a2,...)的母函数。关于母函数的思路我们不做更多分析。

        我们从整数划分考虑,假设n的某个划分中,1的出现个数记为a1,2的个数记为a2,..., i的个数记为ai,

        显然: ak<=n/k; (0<= k <=n)

        因此n的划分数f(n,n),也就是从1到n这n个数字中抽取这样的组合,每个数字理论上可以无限重复出现,即个数随意,使他们的总和为n。显然,数字i可以有如下可能,出现0次(即不出现),1次,2次,..., k次,等等。把数字i用(x^i)表示,出现k次的数字i用 x^(i*k)表示, 不出现用1表示。例如数字2用x^2表示,2个2用x^4表示,3个2用x^6表示,k个2用x^2k表示。

         则对于从1到N的所有可能组合结果我们可以表示为:

         G(x) = (1+x+x^2+x^3+...+x^n) (1+x^2+x^4+...) (1+x^3+x^6+...) ... (1+x^n)

                 = g(x,1) g(x,2) g(x,3) ... g(x, n)

                 = a0 + a1* x + a2* x^2 + ... + an* x^n + ... ;  (展开式)

        上面的表达式中,每一个括号内的多项式代表了数字i的参与到划分中的所有可能情况。因此该多项式展开后,由于x^a * x^b=x^(a+b),因此 x^i 就代表了i的划分,展开后(x^i)项的系数也就是i的所有划分的个数,即f(n,n)=an (上式中g(x,i)表示数字i的所有可能出现情况)。

        由此我们找到了关于整数划分的母函数G(x);剩下的问题是,我们需要求出G(x)的展开后的所有系数。

        为此我们首先要做多项式乘法,对于我们来说并不困难。我们把一个关于x的一元多项式用一个整数数组a[]表示,a[i]代表x^i的系数,即:

        g(x) = a[0] + a[1]x + a[2]x^2 + ... + a[n]x^n;

#include<iostream>

using namespace std;

int table[101][101];
int f(int n,int m)
{
    if(n==1||m==1)
        return 1;
    else if(table[n][m]>0)
        return table[n][m];
    else
    {
        if(n<m)
        {
            table[n][m] = f(n,n);
        }
        else if(n==m)
            table[n][m] = 1+f(n,m-1);
        else
            table[n][m] =  f(n-m,m)+f(n,m-1);
    }
    return table[n][m];

}

int main()
{
    int T;
    cin>>T;
    for(int i=0;i<101;++i)
        for(int j=0;j<101;++j)
            table[i][j] = -1;
    for(int m=1;m<=T;++m)
    {
        int N;
        cin>>N;
        cout<<f(N,N)<<endl;
    }

    return 0;
}

 

最后欢迎大家访问我的个人网站: 1024s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值