- 数据比较小,直接采用C(a, b) = a * (a - 1) *....* (a - b + 1) / (b * (b - 1) *...* 2 * 1)
试用数据范围:a <= 29。在a = 30, b = 15时,计算分子乘机时即超范围LL C(LL n,LL m) { if(n<m) return 0; LL tmp=1; for(int i=n,i>=n-m+1;i--) tmp*=i; for(int i=b;i>=1;i--) tmp/=i; return tmp; }
- 预处理出需要的组合数,如需计算较大的组合数可采用(经常会取模,也很方便)。使用C(a, b) = C(a - 1, b - 1) + C(a - 1, b - 1)递推处理
因为计算过程中采用递推的加法运算,所以不取模的时候最大可以算到a = 66
但是,这种情况一般伴随着取模的操作,所以考虑到内存限制的时候,一般可以计算到a = 1000(不一定,受限于内存)const int maxn1=1000; const int maxn2=1000; const long long mod=1000000007; LL f[maxn1][maxn2]; void C() { for(int i=0;i<=maxn1;i++) f[i][0]=1; for(int i=1;i<=maxn1;i++) { for(int j=1;j<=min(i,maxn2-1);j++) { f[i][j]=(f[i-1][j]+f[i-1][j-1])%mod; } } }
- 采用分解质因子的方式,可以计算足够大的数(因为数字会超过long long的范围,所以结果依然用质因子表示,模板中计算出了相应的数)
map <int, LL> m; //分解质因数 //k为1或-1 void fun(int n, int k) { for (int i = 2; i <= sqrt(n * 1.0); i++) { while (n % i == 0) { n /= i; m[i] += k; } } if (n > 1) { m[n] += k; } } //大数快速幂取模 LL quick_pow(LL a, LL b) { LL ret = 1; while (b) { if (b & 1) { ret *= a; ret %= MOD; } b >>= 1; a *= a; a %= MOD; } return ret; } //求组合数 LL C(LL a, LL b) { if (a < b || a < 0 || b < 0) return 0; m.clear(); LL ret = 1; b = min(a - b, b); for (int i = 0; i < b; i++) { fun(a - i, 1); } for (int i = b; i >= 1; i--) { fun(i, -1); } ///以下计算出了具体的数 for (__typeof(m.begin()) it = m.begin(); it != m.end(); it++) { if ((*it).second != 0) { ret *= quick_pow((*it).first, (*it).second); ret %= MOD; } } return ret; }
计算组合数的几种方法
最新推荐文章于 2022-08-13 20:42:22 发布