P1433 吃奶酪(状态压缩dp)(内附封面)

吃奶酪

题目描述

房间里放着 n n n 块奶酪。一只小老鼠要把它们都吃掉,问至少要跑多少距离?老鼠一开始在 ( 0 , 0 ) (0,0) (0,0) 点处。

输入格式

第一行有一个整数,表示奶酪的数量 n n n

2 2 2 到第 ( n + 1 ) (n + 1) (n+1) 行,每行两个实数,第 ( i + 1 ) (i + 1) (i+1) 行的实数分别表示第 i i i 块奶酪的横纵坐标 x i , y i x_i, y_i xi,yi

输出格式

输出一行一个实数,表示要跑的最少距离,保留 2 2 2 位小数。

样例 #1

样例输入 #1

4
1 1
1 -1
-1 1
-1 -1

样例输出 #1

7.41

提示

数据规模与约定

对于全部的测试点,保证 1 ≤ n ≤ 15 1\leq n\leq 15 1n15 ∣ x i ∣ , ∣ y i ∣ ≤ 200 |x_i|, |y_i| \leq 200 xi,yi200,小数点后最多有 3 3 3 位数字。

提示

对于两个点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2, y_2) (x2,y2),两点之间的距离公式为 ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 \sqrt{(x_1-x_2)^2+(y_1-y_2)^2} (x1x2)2+(y1y2)2


2022.7.13 2022.7.13 2022.7.13:新增加一组 Hack \text{Hack} Hack 数据。


前置知识:位运算

状态压缩dp

状态压缩的思想是用二进制来表示状态。用一个整数的二进制形式的每一个二进制位 0 或 1 表示一个状态。

本题是一道比较基础的状压DP题目。

状压DP的时间复杂度为 O ( n 2 2 n ) O(n^2 2^n) O(n22n)
通常只能通过 N ≤ 21 N \leq 21 N21 的数据范围,本题数据范围为 N ≤ 15 N \leq 15 N15 因此可以使用状压DP。

大致思路

坐标可能为实数,因此要用double类型存储。

定义一个数组 F i , j F_{i,j} Fi,j表示老鼠走到第 i 个奶酪,且走过的二进制状态为 j 时,最短的距离。

举例来说,可以使用二进制 1010011010100110 来表示已经走过第 2、3、6、8 个奶酪,此时 j 的值为 166。需要注意的是,第 i 个状态是从低位向高位的第i位。

在更新 F 数组状态时会用到两点间的距离,使用两点间距离公式计算:

a = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 a =\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} a=(x1x2)2+(y1y2)2

首先要将 F 数组进行初始化为极大值,可以使用 m e m s e t ( F , 127 , s i z e o f ( F ) ) memset(F,127,sizeof(F)) memset(F,127,sizeof(F));来为浮点数赋极大值

因为到达第 i 块奶酪,且只经过过第 ii 块奶酪的距离即为第i块奶酪与坐标原点的距离。
因此要初始化 F [ i ] [ ( 1 < < ( i − 1 ) ) ] = a [ 0 ] [ i ] F[i][(1<<(i-1))]=a[0][i] F[i][(1<<(i1))]=a[0][i];。

接下来是三层循环,分别枚举所有可能的二进制状态、当前点所在的位置和能在当前状态下到达当前点的位置。

在第二层循环中要判断一下 i 在当前二进制状态下是否已走过,如果根本没走过则不需要进行接下来的计算,直接continue就可以。

在第三层运算中同样要判断当前点是否已走过,且当前点不与 i 点相同。

接下来就可以转移状态了:

设此时二进制状态为 kk,终点为 ii,起点为 jj,可得状态转移方程: F i , k = min ⁡ ( F i , k , F j , k − 2 i − 1 + A i , j ) F_{i,k}=\min(F_{i,k},F_{j,k-{2^{i-1}}} +A_{i,j}) Fi,k=min(Fi,k,Fj,k2i1+Ai,j)

为在 j 点且没有走过 i 点的最短距离, A i , j A_{i,j} Ai,j

是从 i 到 j 的距离。

最后,找出 F i , 2 N − 1 F_{i,2^N-1} Fi,2N1中的最小值就是最终的答案了。

AC CODE

#include<bits/stdc++.h>
using namespace std;
const int N=666;
int n;
double ans=0x7f7f7f7f;
double dis(double x1,double y1,double x2,double y2){
	return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
struct node{
	double x,y;
}a[N];
double f[20][114514],adis[66][66];
int main(){
	cin>>n;
	for(int i=1;i<=n;i++){
		cin>>a[i].x>>a[i].y;
	}
	a[0].x=0;a[0].y=0;
	for(int i=0;i<=n;i++){
		for(int j=i+1;j<=n;j++){
			adis[i][j]=dis(a[i].x,a[i].y,a[j].x,a[j].y);
			adis[j][i]=adis[i][j];
			//cout<<adis[i][j]<<endl;
		}
	}
	memset(f,127,sizeof(f));
	for(int i=1;i<=n;i++){
		f[i][1<<(i-1)]=adis[0][i];
	}
	for(int k=1;k<(1<<n);k++){
		for(int i=1;i<=n;i++){
			if((k&(1<<(i-1)))==0)continue;
			for(int j=1;j<=n;j++){
				if((k&(1<<(j-1)))==0)continue;
				if(i==j)continue;
				f[i][k]=min(f[i][k],f[j][k-(1<<(i-1))]+adis[i][j]);
			}
		}
	}
	for(int i=1;i<=n;i++){
		ans=min(f[i][(1<<n)-1],ans);
	}
	printf("%.2lf",ans);
	return 0;
}

附封面

请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值