数据结构与算法(1)

1. 什么是数据结构?
数据结构(Data Structure)是计算机存储、组织数据的方式,指相互之间存在一种或多种特定关系的数据元素的集合。
2.什么是算法?
算法(Algorithm):就是定义良好的计算过程,他取一个或一组的值为输入,并产生出一个或一组值作为输出。简单来说算法就是一系列的计算步骤,用来将输入数据转化为输出结果。
算法效率
算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称作空间复杂度。
时间复杂度
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。算法中的基本操作的执行次数,为算法的时间复杂度。
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法
大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶方法:
1、用常数1取代运行时间中的所有加法常数。
2、在修改后的运行次数函数中,只保留最高阶项。
3、如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。

void Func2(int N) {
   int count = 0;
   for (int k = 0; k < 2 * N ; ++ k) {
       ++count; 
   }
   int M = 10;
   while (M--) {
       ++count; 
   }
   printf("%d\n", count);
}
基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为 O(N)

空间复杂度
空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空间,而是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。

void BubbleSort(int* a, int n) {
    assert(a);
    for (size_t end = n; end > 0; --end)
    {
        int exchange = 0;
        for (size_t i = 1; i < end; ++i{
            if (a[i-1] > a[i]){
                Swap(&a[i-1], &a[i]);
                exchange = 1;
            }
        }
        if (exchange == 0)
            break;
    }
}
使用了常数个额外空间,所以空间复杂度为 O(1)
long long* Fibonacci(size_t n) {
     if(n==0)   return NULL;
     long long * fibArray =
     (long long *)malloc((n+1) * sizeof(long long));
     fibArray[0] = 0;
     fibArray[1] = 1;for (int i = 2; i <= n ; ++i){
          fibArray[i ] = fibArray[ i - 1] + fibArray [i - 2];
     }
     return fibArray ;
}
动态开辟了N个空间,空间复杂度为 O(N)
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页