题目一:239. 滑动窗口最大值
初见:做过一次滑动窗口的题目,但对滑动窗口的理解还是没有那么深刻
思路:
1. 滑动窗口解题
2. 设置一个可以容纳滑动窗口的容器,如队列这些
3. 最重要的是,滑动窗口移动时,最大值的输出和窗口最左边的值的pop
4.由此可以引申出,每次窗口移动,需要设置一个pop函数来pop函数最左边的值
和一个push值,来接受新的数据,并判断是否为此时窗口最大值。
代码:
需要注意的是第一次窗口的设置
和窗口移动的边界
class Solution {
//创建一个单调队列类,存放所需要使用的方法
class MyQue
{
public:
//删除窗口最左边的一个
//因为窗口移动后,之前最左边的数据不应该在队列里
void pop(int val)
{
if(!que.empty())
{
//如果队列的front元素不对应,则不删除
if(val == que.front())
{
que.pop_front();
}
}
}
//添加元素,并判断该元素之前的元素是否存在更小
//若存在,则pop_back删除(比较的是队列后面的元素)
//保证最大值为队列的front元素
void push(int val)
{
//注意:若元素相等则不删除
while(!que.empty() && que.back() < val)
{
que.pop_back();
}
que.push_back(val);
}
//返回最大值,队列的front元素
int front() {
return que.front();
}
//定义成员变量
deque<int> que;
};
public:
vector<int> maxSlidingWindow(vector<int>& nums, int k) {
//创建对象,来使用类的方法
MyQue que;
//创建数组
vector<int> result;
//第一次先将前k个元素放入,并且将最大值放入数组
for(int i = 0; i < k; i++)
{
que.push(nums[i]);
}
result.push_back(que.front());
//循环n - k次,先删除上次窗口的最左值,再录入新的值
for(int i = 0; i < nums.size() - k; i++)
{
que.pop(nums[i]);
que.push(nums[i + k]);
result.push_back(que.front());
}
return result;
}
};