leetcode 674. 最长连续递增序列 动态规划

本文介绍如何使用C++编程语言通过动态规划方法解决一个问题,即给定一个未排序的整数数组,找出最长的连续递增子序列的长度。代码展示了如何利用一个dp数组来计算和更新最长递增子序列的长度。
摘要由CSDN通过智能技术生成

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 rl < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1:

输入:nums = [1,3,5,4,7]
输出:3
解释:最长连续递增序列是 [1,3,5], 长度为3。
尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。
#include <stdio.h>
#include <stdlib.h>
#include "string.h"

#define max(a, b) (((a) > (b)) ? (a) : (b))

int maxLen(int* nums, int numsSize){
    int dp[numsSize+1];
    int result = 1;
    for (int i = 1; i < numsSize; ++i) {
        dp[i]=1;
        if (nums[i] > nums[i-1])
            dp[i] = dp[i-1] + 1;
        if (dp[i] > result)
            result = dp[i];
    }
    printf("%d ",result);
}
int main()
{
    int nums[]={10,9,2,5,3,7,101,18};
    maxLen(nums,8);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值