leetcode 53 最大子段和(动态规划)

给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
示例:
输入: [-2,1,-3,4,-1,2,1,-5,4],
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。
进阶:
如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的分治法求解。
若采用暴力枚举所有连续字段的和,复杂度是O(n^2)
若尝试采用动态规划方法,最关键的是确认动态规划状态,若假设第i个状态dp[i]代表前i个数字组成的连续的最大字段和,能否推导出dp[i]与dp[i-1]之间的关系?
实际上,如果设第i个状态dp[i]代表前i个数字组成的连续的最大子段和,并不能够根据dp[i-1]、dp[i-2]、……、dp[0]推导出dp[i]
两者不相邻,故无法构成连续的子数组,之间无内在联系,故无法进行推导
为了让第i个状态的最优解与第i-1个状态的最优解产生直接联系
如果第i个状态dp[i]代表以第i个数字结尾的最大字段和,那么dp[i]与dp[i-1]之间的关系是什么
将求n个数的数组的最大字段和,转化为分别求以第1个、第2个、……、第n个数字结尾的最大字段和,再找出这n个结果中最大的,即为结果
动态规划算法:
第i个状态dp[i]即为以第i个数字结尾的最大子段和,由于第i-1个数字结尾的最大字段和dp[i-1]与nums[i]相邻
状态转移方程:dp[i] = max(dp[i-1]+nums[i],nums[i])
边界条件:以第一个数字结尾的最大字段和dp[0] = nums[0]

class Solution {
public:
    int maxSubArray(vector<int>& nums) {
        vector<int> dp(nums.size(), 0);
        dp[0] = nums[0];
        int max_res = dp[0];
        for (int i = 1; i < nums.size(); i++){
            dp[i] = max(dp[i-1]+nums[i], nums[i]);
            if (dp[i] > max_res){
                max_res = dp[i];
            }
        }
        return max_res;
    }
};
发布了80 篇原创文章 · 获赞 4 · 访问量 2360
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览