给定一个 N 叉树,找到其最大深度。
最大深度是指从根节点到最远叶子节点的最长路径上的节点总数。
N 叉树输入按层序遍历序列化表示,每组子节点由空值分隔(请参见示例)。
链接:https://leetcode-cn.com/problems/maximum-depth-of-n-ary-tree
实例一:
输入:root = [1,null,3,2,4,null,5,6]
输出:3
实例二:
输入:root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
输出:5
解法一:
采用递归的解法,参考二叉树的最大的深度解法:https://blog.csdn.net/CLZHIT/article/details/111118994
/*
// Definition for a Node.
class Node {
public:
int val;
vector<Node*> children;
Node() {}
Node(int _val) {
val = _val;
}
Node(int _val, vector<Node*> _children) {
val = _val;
children = _children;
}
};
*/
class Solution {
public:
int maxDepth(Node* root) {
if(root == nullptr)
{
return 0;
}
int depth = 0;
for(int i = 0; i < root->children.size(); i++)
{
depth = max(depth, maxDepth(root->children[i]));
}
return 1 + depth;
}
};
解法二:采用层次遍历的解法
class Solution {
public:
int maxDepth(Node* root) {
int depth = 0;
queue<Node*> que;
if(root != nullptr) que.push(root);
while(!que.empty())
{
depth++;
int size = que.size();
for(int i = 0; i < size; i++)
{
Node* tmpNode = que.front();
que.pop();
for(int i = 0; i < tmpNode->children.size(); i++)
{
if(tmpNode->children[i]) que.push(tmpNode->children[i]);
}
}
}
return depth;
}
};