AI在研发过程中的应用现状

本文内容摘取自2025.1.15日CMMI研究院视频号直播中分享嘉宾胡伟健先生的线上分享。所提到的现状,也是以这个时间点作为基础。文中观点仅代表演讲人本人观点。

目前AI已经在各行各业中都得到了应用,作为一名软件行业从业人员,关注是在研发的管理过程中,它是一个什么样的现状?

软件工程中LLM应用现状

从这张图,借用的是南京大学荣国平老师团队做的一个调研报告,们可以很明显的看出,代码是最主要的应用环节,其次就是测试,特别是单元测试部分。另外,在需求、运维和代码评审等典型的软件工程的活动环节也会使用到。代码环节是最多的,不知道跟大家的经验是不是一致?

需求阶段,当前大语言模型对于工作的介入程度非常低,大都仅仅处于探索阶段。例如:多用于文字的整理工作。通过大模型或者 LLM 去协助我们做一些探索。目前阶段大模型还不能很好理解需求。

编码阶段,大语言模型的发展和应用最为成熟,作为辅助工具已经被全面接受。比较多的是自然语言的生成代码,还有知识库,分析判断代码质量等等。相信在这一点上,大家的感受应该是一致的。

测试阶段,大语言模型当前的应用相对单一,基本都集中在单元测试部分,主要是帮助生成单元测试的用例。

运维阶段,大语言模型的应用依然处于探索阶段,应用的相比较少。比如说原因的分析,异常的检测等。

对应用AI技术的优先级变化

下面我们再来看一个来自Google cloud的刚发布的DORA 2024报告

绝大多数调研对象(81%)表示,他们的组织已将工作重点转向将人工智能,并将更多地融入其应用和服务中。他们采用AI技术的主要驱动力来自两个方面:

  1. 竞争压力(竞争对手在用,我们要是不用就跟不上了)
  2. 需要与业界标准保持一致(跟上时代的步伐)

从受访者的调研情况来看,并非所有人都认为带来生产率的提升。75%的受访者认为生产率得到了提升(非常大、一般、轻微);而其他的25%的人认为没有变化甚至降低。安全相关的专业人员、系统管理员、全栈开发人员等角色都认为是有提高的。而对于移动开发人员、SRE、项目经理认为没有提高。

下面我们看一下AI主要用到了什么地方?看看是否和你的理解是一致或者吻合的?

从图中我们可以看到,AI主要应用在以下任务:代码编写、信息整理和总结、解读不熟悉的代码、代码优化、代码文档化、编写测试、Debug、数据分析。其中最经常的使用场景:代码编写(74.9%)和信息整理与总结(71.2%)

大部分人表示人工智能生成的代码通常不会被直接使用,但它们是“最正确的”,足以在完善后使用,并符合现有的质量保证流程。

受访者表示AI对效率、专注度和工作满意度方面有明显的正面影响。但对于AI是否让员工减少“脏活累活”,有更多时间专注所谓“有价值”的工作,并没有符合预期的结论。大部分的开发人员并不认为协调、沟通、会议是特别有价值的工作,可能还是更感兴趣在编写代码本身上

AI在代码开发环节确实有很明显的正向影响,但是对于交付环节并没有带来显著的改善。因此,调研得出结论:更高的软件开发效率并不能自动改善软件交付(这与上线批次大小、质量要求测试程度)。

可以反映出,人工智能虽然提高了编码效率,但是在全局上,例如整个项目上并没有达成我们期望的结果。

最后,我们总结一下AI在研发过程中应用现状的结论:个别的、局部的AI工具的导入,在当前情况下,并不等于组织的整体能力的提升。们做过程管理(CMMI)关注的整个组织的成熟度、能力的整体提升。

  • AI在研发当中的应用是一个明确的趋势,正在飞速发展
  • AI的优势领域:知识挖掘和共享、信息整合、分析和决策支持等方面
  • 目前AI技术在软件开发过程中的应用特点
    • 不可验证性(黑盒)
    • 不可重复性(同样的需求,不能指望AI工具生成版本管理所期望的完全相同的代码?)
    • 决策和治理要求(并不仅仅是“智力”的问题)
    • 需要人的介入(Human In the Loop AI)
  • 目前更多聚焦在个人的、局部的效率和能力,但不能等同与组织甚至团队的能力
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值