大二下:概率论与数理统计复习 2.随机变量及其分布之实例演战

大二下:概率论与数理统计复习 导航页:https://blog.csdn.net/COCO56/article/details/100152856

1. 求随机变量X的分布律

一袋中装有5只球,编号为1,2,3,4,5。在袋中同时取出3只球,3只球的最大编号为X,求随机变量X的分布律。
解:

X345
P0.10.30.6

P ( X = 3 ) = C 2 2 C 5 3 = 0.1 ,   P ( X = 4 ) = C 3 2 C 5 3 = 0.3 ,   P ( X = 5 ) = C 4 2 C 5 3 = 0.6 P(X=3)=\frac{C_2^2}{C_5^3}=0.1,\ P(X=4)=\frac{C_3^2}{C_5^3}=0.3, \ P(X=5)=\frac{C_4^2}{C_5^3}=0.6 P(X=3)=C53C22=0.1, P(X=4)=C53C32=0.3, P(X=5)=C53C42=0.6
在这里插入图片描述

2.

某吧台柜台前有吧凳7张,无人就坐,现有2个客人进来随机就坐,则两人就坐相隔凳子数X的概率分布为。
解:
总 数 : C 7 2 A 2 2 = 42 总数:C_7^2A_2^2=42 C72A22=42

X012345
P 6 21 \frac{6}{21} 216 5 21 \frac{5}{21} 215 4 21 \frac{4}{21} 214 3 21 \frac{3}{21} 213 2 21 \frac{2}{21} 212 1 21 \frac{1}{21} 211

P ( X = 0 ) = ( 7 − 1 ) × A 2 2 42 = 6 21 P ( X = 1 ) = ( 7 − 2 ) × A 2 2 42 = 5 21 P ( X = 2 ) = ( 7 − 3 ) × A 2 2 42 = 4 21 P ( X = 3 ) = ( 7 − 4 ) × A 2 2 42 = 3 21 P ( X = 4 ) = ( 7 − 5 ) × A 2 2 42 = 2 21 P ( X = 5 ) = ( 7 − 6 ) × A 2 2 42 = 1 21 \begin{aligned} &P(X=0)=\frac{(7-1)\times A_2^2}{42}=\frac{6}{21} &P(X=1)=\frac{(7-2)\times A_2^2}{42}=\frac{5}{21} \\ &P(X=2)=\frac{(7-3)\times A_2^2}{42}=\frac{4}{21} &P(X=3)=\frac{(7-4)\times A_2^2}{42}=\frac{3}{21} \\ &P(X=4)=\frac{(7-5)\times A_2^2}{42}=\frac{2}{21} &P(X=5)=\frac{(7-6)\times A_2^2}{42}=\frac{1}{21} \\ \end{aligned} P(X=0)=42(71)×A22=216P(X=2)=42(73)×A22=214P(X=4)=42(75)×A22=212P(X=1)=42(72)×A22=215P(X=3)=42(74)×A22=213P(X=5)=42(76)×A22=211
在这里插入图片描述

3.

设随机变量X的分布律为:

X012
p k p_k pk0.30.50.2

求X的分布函数 F x ( x ) F_x(x) Fx(x)
解:
F x ( x ) = P ( X ≤ x ) F_x(x)=P(X\le x) Fx(x)=P(Xx)
F x ( x ) = { 0 , x < 0 0.3 , 0 ≤ x < 1 0.8 , 1 ≤ x < 2 1 , x ≥ 2 F_x(x)= \left\{ \begin{aligned} &0, &x<0\\ &0.3, &0\le x<1\\ &0.8, &1\le x<2\\ &1, &x\ge2 \end{aligned} \right. Fx(x)=0,0.3,0.8,1,x<00x<11x<2x2
在这里插入图片描述
注:这类问题有套路,对于分布律为

XABC
p k p_k pk α \alpha α β \beta β γ \gamma γ

的随机变量X,其分布函数为:
F ( x ) = { 0 , x < A , α , A ≤ x < B , α + β , B ≤ x < C , 1 , x ≥ C . F(x)= \left\{ \begin{aligned} &0, &x<A,\\ &\alpha, &A\le x<B,\\ &\alpha+\beta, &B\le x<C,\\ &1, &x\ge C. \end{aligned} \right. F(x)=0,α,α+β,1,x<A,Ax<B,Bx<C,xC.
分 布 律 X 有 n 个 取 值 , 分 布 函 数 大 括 号 后 面 就 有 n + 1 行 ; 分 布 函 数 第 一 行 取 值 为 0 , 最 后 一 行 取 值 为 1 ( α + β + γ = 1 ) , 中 间 为 概 率 逐 个 相 加 , 自 行 体 会 。 分布律X有n个取值,分布函数大括号后面就有n+1行;分布函数第一行取值为0,最后一行取值为1(\alpha+\beta+\gamma=1),中间为概率逐个相加,自行体会。 Xnn+101(α+β+γ=1)

4.

随机变量X的分布律为:

X-2-1012
p k p_k pk 1 5 \frac{1}{5} 51 1 6 \frac{1}{6} 61 1 5 \frac{1}{5} 51 1 15 \frac{1}{15} 151 11 30 \frac{11}{30} 3011

求 Y = ( X − 1 ) 2 的 分 布 律 ; Y 的 分 布 函 数 F Y ( y ) 。 求Y=(X-1)^2的分布律;Y的分布函数F_Y(y)。 Y=(X1)2YFY(y)
分析:求离散随机变量函数的分布律,分两步:

  1. 根据X的值求出对应的Y的值;
  2. 求出的Y值如果相等,则合并起来,对应概率值相加,再写出对应分布律。

解:求对应Y的值:

X-2-1012
Y94101
p k p_k pk 1 5 \frac{1}{5} 51 1 6 \frac{1}{6} 61 1 5 \frac{1}{5} 51 1 15 \frac{1}{15} 151 11 30 \frac{11}{30} 3011

合并相同取值得到Y的分布律为:

Y9410
p k p_k pk 1 5 \frac{1}{5} 51 1 6 \frac{1}{6} 61 17 30 \frac{17}{30} 3017 1 15 \frac{1}{15} 151

从小到大重排为:

Y0149
p k p_k pk 1 15 \frac{1}{15} 151 17 30 \frac{17}{30} 3017 1 6 \frac{1}{6} 61 1 5 \frac{1}{5} 51

Y的分布函数:
F Y ( y ) = { 0 , y < 0 , 1 15 , 0 ≤ y < 1 , 19 30 , 1 ≤ y < 4 , 4 5 , 4 ≤ y < 9 , 1 , 9 ≤ y . F_Y(y)= \left\{ \begin{aligned} &0, &y<0,\\ &\frac{1}{15}, &0\le y<1,\\ &\frac{19}{30}, &1\le y<4,\\ &\frac{4}{5}, &4\le y<9,\\ &1, &9\le y. \end{aligned} \right. FY(y)=0,151,3019,54,1,y<0,0y<1,1y<4,4y<9,9y.

5.

设 随 机 变 量 X ∼ P ( λ ) ( 泊 松 分 布 ) , 且 P ( X = 0 ) = e − 2 , 则 常 数 λ = 2 ‾ , 概 率 P ( X ≤ 2 ) = 5 e − 2 ‾ . 设随机变量X\sim P(\lambda)(泊松分布),且P(X=0)=e^{-2},则常数\lambda =\underline{2}, 概率P(X\le2)=\underline{5e^{-2}}. XP(λ)()P(X=0)=e2λ=2,P(X2)=5e2.
解:
P ( X = k ) = λ k ⋅ e − λ k ! P(X=k)=\frac{\lambda^k\cdot e^{-\lambda}}{k!} P(X=k)=k!λkeλ
P ( X = 0 ) = e − λ 0 ! = e − λ = ^ e − 2 ⇒ λ = 2 P(X=0)=\frac{e^{-\lambda}}{0!}=e^{-\lambda}\hat=e^{-2}\Rightarrow \lambda=2 P(X=0)=0!eλ=eλ=^e2λ=2
P ( X ≤ 2 ) = P ( X = 0 ) + P ( X = 1 ) + P ( X = 2 ) = e − 2 + 2 ⋅ e − 2 1 ! + 2 2 ⋅ e − 2 2 ! = 5 e − 2 \begin{aligned}P(X\le2)&=P(X=0)+P(X=1)+P(X=2)\\ &=e^{-2}+\frac{2\cdot e^{-2}}{1!}+\frac{2^2\cdot e^{-2}}{2!}=5e^{-2}\end{aligned} P(X2)=P(X=0)+P(X=1)+P(X=2)=e2+1!2e2+2!22e2=5e2

6.

设 随 机 变 量 X ∼ U ( 1 , 6 ) ( 均 匀 分 布 ) , 则 X 的 概 率 密 度 函 数 为 , 关 于 t 的 二 次 方 程 t 2 − X t + 1 = 0 有 实 根 的 概 率 为 . 设随机变量X\sim U(1,6)(均匀分布),则X的概率密度函数为,关于t的二次方程t^2-Xt+1=0有实根的概率为. XU(1,6)()Xtt2Xt+1=0.
解:均匀分布的概率密度函数为 f ( x ) = { 1 b − a , a < x < b 0 , 其 他 , f(x)=\left\{\begin{aligned} &\frac{1}{b-a}, &a<x<b\\ &0, &其他\end{aligned}\right.,\quad f(x)=ba1,0,a<x<b,则X的概率密度函数为 f ( x ) = { 1 5 , 1 < x < 6 0 , 其 他 ; 方 程 t 2 − X t + 1 = 0 有 实 根 的 充 要 条 件 是 : Δ = X 2 − 4 ≥ 0 ⇔ ∣ X ∣ ≥ 2 , 于 是 所 求 概 率 为 P ( ∣ X ∣ ≥ 2 ) = 1 − P ( ∣ X ∣ < 2 ) = 1 − P ( − 2 < X < 2 ) = 1 − ∫ − 2 2 f ( x ) d x = 1 − 1 5 = 4 5 f(x)=\left\{\begin{aligned} &\frac{1}{5}, &1<x<6\\ &0, &其他\end{aligned}\right.;\\ 方程t^2-Xt+1=0有实根的充要条件是:\Delta=X^2-4\ge0\Leftrightarrow|X|\ge2, 于是所求概率为P(|X|\ge2)=1-P(|X|<2)=1-P(-2<X<2)=1-\int_{-2}^2f(x)dx=1-\frac{1}{5}=\frac{4}{5} f(x)=51,0,1<x<6;t2Xt+1=0Δ=X240X2,P(X2)=1P(X<2)=1P(2<X<2)=122f(x)dx=151=54
在这里插入图片描述

7.

设 随 机 变 量 X 服 从 指 数 分 布 , 概 率 密 度 为 f ( x ) = { 1 4 e − x 4 , x > 0 0 , x ≤ 0 ,   则 方 程 t 2 − 2 X t + ( X + 2 ) = 0 无 实 根 的 概 率 为 设随机变量X服从指数分布,概率密度为f(x)=\left\{\begin{aligned} &\frac{1}{4}e^{-\frac{x}{4}}, &x>0\\ &0, &x\le0\end{aligned}\right.,\ 则方程t^2-2Xt+(X+2)=0无实根的概率为 Xf(x)=41e4x,0,x>0x0, t22Xt+(X+2)=0
解:
方法一:
方 程 t 2 − 2 X t + ( X + 2 ) = 0 无 实 根 的 充 要 条 件 是 : 方程t^2-2Xt+(X+2)=0无实根的充要条件是: t22Xt+(X+2)=0
δ = 4 X 2 − 4 ( X + 2 ) = 4 ( X − 2 ) ( X + 1 ) < 0 ⇔ − 1 < X < 2. \delta=4X^2-4(X+2)=4(X-2)(X+1)<0\Leftrightarrow-1<X<2. δ=4X24(X+2)=4(X2)(X+1)<01<X<2.
于 是 所 求 概 率 为 : 于是所求概率为:
P ( − 1 < X < 2 ) = ∫ − 1 2 f ( x ) d x = ∫ − 1 0 f ( x ) d x + ∫ 0 2 f ( x ) d x = 0 + ( − e − x 4 ∣ 0 2 ) = 1 − e − 1 2 \begin{aligned}P(-1<X<2)&=\int_{-1}^{2}f(x)dx\\ &=\int_{-1}^{0}f(x)dx+\int_{0}^{2}f(x)dx\\ &=0+(-e^{-\frac{x}{4}}|^2_0)\\ &=1-e^{-\frac{1}{2}} \end{aligned} P(1<X<2)=12f(x)dx=10f(x)dx+02f(x)dx=0+(e4x02)=1e21
方法二:
∵ 指 数 分 布 的 概 率 分 布 函 数 : F ( x ) = 1 − e − λ x ∴ P ( − 1 < X < 2 ) = F ( 2 ) − F ( − 1 ) = F ( 2 ) − 0 = 1 − e − λ x = 1 − e − 1 4 × 2 = 1 − e − 1 2 \because指数分布的概率分布函数:F(x)=1-e^{-\lambda x}\\ \therefore P(-1<X<2)=F(2)-F(-1)=F(2)-0=1-e^{-\lambda x}=1-e^{-\frac{1}{4}\times2}=1-e^{-\frac{1}{2}} F(x)=1eλxP(1<X<2)=F(2)F(1)=F(2)0=1eλx=1e41×2=1e21

8.

某 人 家 住 市 区 西 郊 , 在 东 郊 上 班 , 上 班 的 第 一 条 线 路 是 横 穿 市 区 , 所 需 时 间 X ∼ N ( 30 , 1 0 2 ) , 第 二 条 线 路 是 沿 环 城 公 路 , 所 需 时 间 Y ∼ N ( 40 , 4 2 ) ( 单 位 均 为 分 钟 ) , 某 天 他 提 前 50 分 钟 出 发 , 那 么 他 该 选 择 第   2   ‾ 条 线 路 。 某人家住市区西郊,在东郊上班,上班的第一条线路是横穿市区,所需时间X\sim N(30,10^2),第二条线路是沿环城公路,所需时间Y\sim N(40,4^2)(单位均为分钟),某天他提前50分钟出发,那么他该选择第\underline{\ 2\ }条线路。 西线穿XN(30,102)线沿YN(40,42)50 2 线
解:此题的意思是让我们求哪条线路用时会大于50分钟的概率比较小,也就是求P(X>50)和P(Y>50)。标准化求得:
∵ 对 于 X ∼ N ( μ , σ 2 ) 有 P { X > x } = P { X − μ σ > x − μ σ } = 1 − Φ ( x − μ σ ) \because 对于X\sim N(\mu, \sigma^2)有P\{X>x\}=P\{\frac{X-\mu}{\sigma}>\frac{x-\mu}{\sigma}\}=1-\Phi(\frac{x-\mu}{\sigma}) XN(μ,σ2)P{X>x}=P{σXμ>σxμ}=1Φ(σxμ)
∴ P ( X > 50 ) = P ( X − 30 10 > 50 − 30 10 ) = P ( Z > 2 ) = 1 − P ( Z ≤ 2 )     = 1 − Φ ( 2 ) = 1 − 0.9772 = 0.0228 P ( Y > 50 ) = P ( X − 40 4 > 50 − 40 4 ) = 1 − Φ ( 2.5 ) = 1 − 0.9938 = 0.0062 \begin{aligned} \therefore&P(X>50)=P(\frac{X-30}{10}>\frac{50-30}{10})=P(Z>2)=1-P(Z\le2) \\&\qquad\qquad\ \ \ =1-\Phi(2)=1-0.9772=0.0228\\ &P(Y>50)=P(\frac{X-40}{4}>\frac{50-40}{4})=1-\Phi(2.5)=1-0.9938=0.0062 \end{aligned} P(X>50)=P(10X30>105030)=P(Z>2)=1P(Z2)   =1Φ(2)=10.9772=0.0228P(Y>50)=P(4X40>45040)=1Φ(2.5)=10.9938=0.0062
可 以 看 出 P ( Y > 50 ) 的 值 较 小 , 因 此 应 该 选 择 第 二 条 线 路 。 可以看出P(Y>50)的值较小,因此应该选择第二条线路。 P(Y>50)线

9. 已知概率密度函数求分布函数

设 连 续 型 随 机 变 量 X 的 概 率 密 度 为 f ( x ) = { 2 π 1 − x 2 , 0 < x < c 0 , 其 他 设连续型随机变量X的概率密度为f(x)=\left\{\begin{aligned} &\frac{2}{\pi\sqrt{1-x^2}}, &0<x<c\\ &0, &其他\end{aligned}\right. Xf(x)=π1x2 2,0,0<x<c
( 1 ) 确 定 c 的 值 ; ( 2 ) 求 X 的 分 布 函 数 F ( x ) . (1)确定c的值;(2)求X的分布函数F(x). (1)c(2)XF(x).
解:
( 1 ) ∫ − ∞ + ∞ f ( x ) d x = 1 ⇒ ∫ − ∞ + ∞ 2 π 1 − x 2 d x = 1 (1)\int_{-\infty}^{+\infty}f(x)dx=1\Rightarrow\int_{-\infty}^{+\infty}\frac{2}{\pi\sqrt{1-x^2}}dx=1 (1)+f(x)dx=1+π1x2 2dx=1
⇒ ∫ 0 c 2 π 1 − x 2 d x = 1 ⇒ 2 π arcsin ⁡ x ∣ 0 c = 2 π arcsin ⁡ c = ^ 1 \Rightarrow\int_{0}^{c}\frac{2}{\pi\sqrt{1-x^2}}dx=1\Rightarrow\frac{2}{\pi}\arcsin{x}|_0^c=\frac{2}{\pi}\arcsin{c}\hat=1 0cπ1x2 2dx=1π2arcsinx0c=π2arcsinc=^1
⇒ arcsin ⁡ c = π 2 ⇒ c = 1 \Rightarrow\arcsin{c}=\frac{\pi}{2}\Rightarrow c=1 arcsinc=2πc=1
( 2 ) 显 然 分 布 函 数 分 段 点 为 0 和 1 , 则 : (2)显然分布函数分段点为0和1,则: (2)01
当 x < 0 时 , F ( x ) = ∫ − ∞ x f ( t ) d t = 0 ; 当x<0时,F(x)=\int_{-\infty}^xf(t)dt=0; x<0F(x)=xf(t)dt=0;
当 0 ≤ x < 1 时 , F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ 0 x 2 π 1 − t 2 d t = 2 π arcsin ⁡ t ∣ 0 x = 2 π arcsin ⁡ x ; 当0\le x<1时,F(x)=\int_{-\infty}^xf(t)dt=\int_0^x\frac{2}{\pi\sqrt{1-t^2}}dt=\frac{2}{\pi}\arcsin{t}|_0^x=\frac{2}{\pi}\arcsin{x}; 0x<1F(x)=xf(t)dt=0xπ1t2 2dt=π2arcsint0x=π2arcsinx;
当 x ≥ 1 时 , F ( x ) = ∫ − ∞ x f ( t ) d t = ∫ − ∞ 0 f ( t ) d t + ∫ 0 1 f ( t ) d t + ∫ 1 + ∞ f ( t ) d t = 1 ; 当x\ge1时,F(x)=\int_{-\infty}^xf(t)dt=\int_{-\infty}^0f(t)dt+\int_0^1f(t)dt+\int_1^{+\infty}f(t)dt=1; x1F(x)=xf(t)dt=0f(t)dt+01f(t)dt+1+f(t)dt=1;
所以,随机变量的分布函数为: F ( x ) = { 0 , x < 0 2 π arcsin ⁡ x , 0 ≤ x < 1 1 , x ≥ 1 F(x)=\left\{\begin{aligned} &0, &x<0\\ &\frac{2}{\pi}\arcsin x, &0\le x<1\\&1, &x\ge1\end{aligned}\right. F(x)=0,π2arcsinx,1,x<00x<1x1
在这里插入图片描述
在这里插入图片描述

注 : 若 随 机 变 量 X 的 概 率 密 度 为 : f ( x ) = { g ( x ) , a ≤ x < b , 0 , 其 他 注:若随机变量X的概率密度为:f(x)=\left\{\begin{aligned} &g(x), &a\le x<b,\\ &0, &其他\end{aligned}\right. Xf(x)={g(x),0,ax<b,
则 X 的 分 布 函 数 为 : f ( x ) = { 0 , x < a ∫ a x g ( t ) d t , a ≤ x < b 1 , x ≥ b 则X的分布函数为:f(x)=\left\{\begin{aligned} &0, &x<a\\&\int_a^xg(t)dt, &a\le x<b\\ &1, &x\ge b\end{aligned}\right. Xf(x)=0,axg(t)dt,1,x<aax<bxb

10. 已知分布函数求概率密度函数

设 连 续 型 随 机 变 量 X 的 分 布 函 数 为 f ( x ) = { A + B e − 2 x , x > 0 , 0 , x ≤ 0. 设连续型随机变量X的分布函数为f(x)=\left\{\begin{aligned} &A+Be^{-2x}, &x>0,\\ &0, &x\le0.\end{aligned}\right. Xf(x)={A+Be2x,0,x>0,x0.
( 1 ) 确 定 A , B 的 值 ; (1)确定A,B的值; (1)A,B;
( 2 ) 求 P ( − 1 < x < 1 ) ; (2)求P(-1<x<1); (2)P(1<x<1);
( 3 ) 求 概 率 密 度 函 数 f x ( x ) ; (3)求概率密度函数f_x(x); (3)fx(x);
( 4 ) 若 Y = 3 X + 1 , 求 概 率 密 度 函 数 f Y ( y ) . (4)若Y=3X+1,求概率密度函数f_Y(y). (4)Y=3X+1,fY(y).
$解: $
( 1 ) (1) (1)
lim ⁡ x → + ∞ ( A + B e − 2 x ) = A = ^ 1 ⇒ A = 1 lim ⁡ x → 0 + F ( x ) = 0 ⇒ lim ⁡ x → 0 + ( A + B e − 2 x ) = 1 + B = ^ 0 ⇒ B = − 1 ∴ A = 1 , B = − 1 \begin{aligned} &\lim_{x \to +\infty}(A+Be^{-2x})=A\hat{=}1\Rightarrow A=1\\ &\lim_{x \to 0^+}F(x)=0\Rightarrow \lim_{x \to 0^+}(A+Be^{-2x})=1+B\hat{=}0\Rightarrow B=-1\\ &\therefore A=1, B=-1 \end{aligned} x+lim(A+Be2x)=A=^1A=1x0+limF(x)=0x0+lim(A+Be2x)=1+B=^0B=1A=1,B=1
( 2 ) P ( − 1 < x < 1 ) = F ( 1 ) − F ( − 1 ) = 1 − e − 2 − 0 = 1 − e − 2 (2)P(-1<x<1)=F(1)-F(-1)=1-e^{-2}-0=1-e^{-2} (2)P(1<x<1)=F(1)F(1)=1e20=1e2
( 3 ) (3) (3)
∵ ( − e − 2 x ) ′ = − e − 2 x ⋅ ( − 2 ) \because (-e^{-2x})'=-e^{-2x}\cdot(-2) (e2x)=e2x(2)
∴ f x = { 2 e − 2 x , x > 0 , 0 , x ≤ 0. \therefore f_x=\left\{\begin{aligned} &2e^{-2x}, &x>0,\\ &0, &x\le0.\end{aligned}\right. fx={2e2x,0,x>0,x0.
( 4 ) ∵ F Y ( y ) = P ( Y ≤ y ) = P ( 3 X + 1 ≤ y ) = P ( X ≤ y − 1 3 ) = F X ( y − 1 3 ) (4)\because F_Y(y)=P(Y\le y)=P(3X+1\le y)=P(X\le\frac{y-1}{3})=F_X(\frac{y-1}{3}) (4)FY(y)=P(Yy)=P(3X+1y)=P(X3y1)=FX(3y1)
∴ f Y ( y ) = f X ( y − 1 3 ) ⋅ 1 3 = { 2 3 e − 2 ⋅ y − 1 3 , y − 1 3 > 0 , 0 , y − 1 3 ≤ 0. = { 2 3 e − 2 ( y − 1 ) 3 , y > 1 , 0 , 其 他 \therefore f_Y(y)=f_X(\frac{y-1}{3})\cdot\frac{1}{3}=\left\{\begin{aligned} &\frac{2}{3}e^{-2\cdot\frac{y-1}{3}}, &\frac{y-1}{3}>0,\\ &0, &\frac{y-1}{3}\le0.\end{aligned}\right.=\left\{\begin{aligned} &\frac{2}{3}e^{\frac{-2(y-1)}{3}}, &y>1,\\ &0, &其他 \end{aligned}\right. fY(y)=fX(3y1)31=32e23y1,0,3y1>0,3y10.=32e32(y1),0,y>1,

11.

设 某 种 型 号 的 电 子 元 件 的 寿 命 X ( 单 位 : 小 时 ) 的 概 率 密 度 函 数 为 : 设某种型号的电子元件的寿命X(单位:小时)的概率密度函数为: 寿X()
f X ( x ) = { 1000 x 2 , x > 1000 , 0 , 其 他 . f_X(x)=\left\{\begin{aligned} &\frac{1000}{x^2}, &x>1000,\\ &0, &其他.\end{aligned}\right. fX(x)=x21000,0,x>1000,.
( 1 ) 求 元 件 的 使 用 寿 命 在 1500 小 时 以 下 的 概 率 ; (1)求元件的使用寿命在1500小时以下的概率; (1)使寿1500
( 2 ) 现 有 5 个 这 种 元 件 独 立 工 作 , 以 Y 表 示 其 中 寿 命 小 于 1500 小 时 的 元 件 个 数 , 写 出 Y 的 分 布 律 ; (2)现有5个这种元件独立工作,以Y表示其中寿命小于1500小时的元件个数,写出Y的分布律; (2)5Y寿1500Y
( 3 ) 求 这 5 个 元 件 中 最 多 有 1 个 寿 命 小 于 1500 小 时 的 概 率 。 (3)求这5个元件中最多有1个寿命小于1500小时的概率。 (3)51寿1500
解 : 解:
( 1 ) : P ( X < 1500 ) = ∫ − ∞ 1500 f x ( x ) d x = ∫ 1000 1500 1000 x 2 d x = [ − 1000 x ] 1000 1500 = 1 3 (1):P(X<1500)=\int_{-\infty}^{1500}f_x(x)dx=\int_{1000}^{1500}\frac{1000}{x^2}dx=[-\frac{1000}{x}]_{1000}^{1500}=\frac{1}{3} (1)P(X<1500)=1500fx(x)dx=10001500x21000dx=[x1000]10001500=31
( 2 ) : Y 服 从 二 项 分 布 : Y ∼ b ( 5 , 1 3 ) . (2):Y服从二项分布:Y\sim b(5,\frac{1}{3}). (2)YYb(5,31).
则 分 布 律 为 : P ( Y = k ) = C 5 k ( 1 3 ) k ( 2 3 ) 5 − k , k = 0 , 1 , 2 , 3 , 4 , 5 则分布律为:P(Y=k)=C_5^k(\frac{1}{3})^k(\frac{2}{3})^{5-k},\quad k=0,1,2,3,4,5 P(Y=k)=C5k(31)k(32)5k,k=0,1,2,3,4,5

Y012345
P 32 243 \frac{32}{243} 24332 80 243 \frac{80}{243} 24380 80 243 \frac{80}{243} 24380 40 243 \frac{40}{243} 24340 10 243 \frac{10}{243} 24310 1 243 \frac{1}{243} 2431

( 3 ) : P ( Y ≤ 1 ) = P ( Y = 0 ) + P ( Y = 1 ) = 32 243 + 80 243 = 112 243 (3):P(Y\le1)=P(Y=0)+P(Y=1)=\frac{32}{243}+\frac{80}{243}=\frac{112}{243} (3):P(Y1)=P(Y=0)+P(Y=1)=24332+24380=243112

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

COCO56(徐可可)

建议微信红包:xucoco56

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值