一、题目描述
棋盘问题
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 94188 Accepted: 43014
Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
…#
…#.
.#…
#…
-1 -1
Sample Output
2
1
Source
蔡错@pku
二、算法分析说明与代码编写指导
由于 n ≤ 8,因此总体数据量不大,可以直接暴力枚举。
准备一个二维的字符数组 c[8][9] 用于存储 n × n 矩阵(每一行的最后一列是结束符‘\0’),a 为答案。std::bitset<8> v[8] 中,所有为 1 的位置代表矩阵上的此坐标放置了棋子。
在下一组数据输入前,应该先清除原先的矩阵,否则新输入的较小规模的矩阵会与原先的混淆,导致给出错误结果。
读入数据后,答案 a 也要先置零,然后开始 DFS。DFS 的三个参数分别是递归层数(layer)、循环的起始坐标。DFS 过程会根据传入的起始坐标(s,t)来按照逐行扫描的方式尝试在每个可以放置棋子的格放置棋子。返回到浅层递归时,当前正在尝试的坐标(x,y)要对应,所以 x 和 y 要设为局部变量(也可以设为参数,具体看个人的实现方式)。
next(x,y)将递归的当前层的正在访问的坐标移动到下一个位置。优先移动列,移动到行末后换到下一行。移动成功返回 true,若移动超出最后一格(n - 1,n - 1)则返回 false。
check 函数用于检查准备放置棋子的格所在的行列是否已经放置了棋子。若是,则新的棋子不可以放在这一格,必须尝试下一个格。
三、AC 代码(282 ms)
#include<cstdio>
#include<algorithm>
#include<bitset>
#pragma warning(disable:4996)
int n, k; char c[8][9]; std::bitset<8