引言
做日历的时候,我们总是希望能够通过日期(年月日)得到星期。在这里,我们将对基姆拉尔森(Kim Larsen)公式进行推导,这个公式根据日期与星期之间的规律指示出两者之间的关系。
符号说明(现实中日期)
特殊日期假设
1年1月1日星期1(平年)
2018年1月1日星期1(平年)
基姆拉尔森公式推导
某年之前闰年的个数计算公式:
(y-1)/4 –(y-1)/100 + (y-1)/400
每公元年的1月1日所属星期的计算公式:
w = (y + (y-1)/4 –(y-1)/100 + (y-1)/400) % 7
假设标准月长28天,则有(平年):
于是有误差列表(平年):
e[] = {0,3,3,6,1,4,6,2,5,0,3,5}
每公元年每月1日所属星期的算法(平年):
w = (e[m-1] + y + (y-1)/4 –(y-1)/100 + (y-1)/400) % 7
每公元年每月1日所属星期的算法(包含闰年):
w = (e[m-1] + y + y/4 –y/100 + y/400) % 7
(其中,闰年的1月2月的星期得-1,闰年下一年的1月2月的星期得+1)
假设每年的第一天为3月1日,每年的1月2月当作13月14月(即本年的3月到12月和下一年的1月2月,此时会涉及到公元前1年的1月2月),则需要重新推导。
重新推导
补充假设:1年3月1日星期4(平年)
每公元年的3月1日所属星期的计算公式:
w = (3 + y + (y-1)/4 –(y-1)/100 + (y-1)/400) % 7
新的误差表(平年):
于是有新的误差列表(平年):
e[] = {0,3,5,1,3,6,2,4,0,2,5,1}
每公元年每月1日所属星期的算法(平年):
w = (e[m-3] + y + (y-1)/4 –(y-1)/100 + (y-1)/400) % 7
每公元年每月1日所属星期的算法(包含闰年):
w = (e[m-3] + y + y/4 –y/100 + y/400) % 7
考虑映射“f: m -> e[m-3]”,前人找出了它们之间的关系:
f(m) = -1 + 2m + 3(m+1)/5
即
每公元年每月1日所属星期的算法(包含闰年):
w = (-1 + 2m + 3(m+1)/5 + y + y/4 –y/100 + y/400) % 7
每公元年每月每日所属星期的算法(包含闰年):
w = (d + 1 + 2m + 3(m+1)/5 + y + y/4 –y/100 + y/400) % 7
每公元年每月每日所属星期的算法(包含闰年):
w = (d + 2m + 3(m+1)/5 + y + y/4 –y/100 + y/400) % 7 + 1
检验公式是否成立:
- 检验1年1月1日星期1:用0(假装存在)年13月1日计算,发现成立。
- 检验2018年10月12日星期5,发现成立。
- 检验2019年10月12日星期6,发现成立。
- 检验2020年10月12日星期1,发现成立。
- 检验2021年10月12日星期2,发现成立。
最终公式
w = (d + 2m + 3(m+1)/5 + y + y/4 - y/100 + y/400) % 7 + 1
使用条件:
- 公元1年及以后年份。
- 计算某年1月2月的日期的星期需要使用前一年13月14月的数据。
- 结果为1到7中的某个数。
- 请给出合法的数据,如用“2018年9月31日”这种无效数据,我也不知道会得到什么东西。
参考文献
[1] 白小白ani. 细说基姆拉尔森日期公式[EB/OL]. https://blog.csdn.net/qq_33114231/article/details/52352668. 2018-10-18.
说明:
本文总结自CSDN博主白小白ani的博客,
可能有考虑不充分的地方,欢迎指出。