《TensorFlow机器学习实战指南》学习笔记一

实现一个简单函数
声明a和b为变量,x为占位符。向目标值50优化输出结果。
代码如下:

import tensorflow as tf
import numpy as np
sess=tf.Session()

a=tf.Variable(tf.constant(1.))
b=tf.Variable(tf.constant(1.))
x_val=10.
x_data=tf.placeholder(dtype=tf.float32)
y_target=tf.constant(50.)

two_gate=tf.add(tf.multiply(a,x_data),b)

loss=tf.square(tf.subtract(two_gate,y_target))

train_step=tf.train.GradientDescentOptimizer(0.001).minimize(loss)

sess.run(tf.initialize_all_variables())

for i in range(100):
    sess.run(train_step,feed_dict={x_data:x_val})
    a_val,b_val=sess.run(a),sess.run(b)
    two_gate_output=sess.run(two_gate,feed_dict={x_data:x_val})
    print(str(a_val)+"*"+str(x_val)+"+"+str(b_val)+"="+str(two_gate_output))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值