- 博客(1385)
- 收藏
- 关注
原创 AI 实战篇:用 LangGraph 串联 RAG+MCP Server,打造能直接操控 Jira 的智能体
AI 实战篇:用 LangGraph 串联 RAG+MCP Server,打造能直接操控 Jira 的智能体
2025-11-17 11:27:35
304
原创 这款AI舆情监控工具爆火了!Github上斩获14700+stars
这两天,一款名为TrendRadar的多平台舆情热点聚合+基于 MCP 的AI分析工具登上了GitHub热门榜首,截至目前已经收获了14.7k stars。
2025-11-17 11:26:41
536
原创 360白皮书深度拆解:大模型安全的5层威胁与全链路防御实战指南
作为一名AI领域的技术从业者,我们一起结合它的核心框架,实战案例及具体方案,全面升级大模型安全的风险图谱、防御逻辑与落地路径,为大家梳理可直接复用的干货指南。
2025-11-17 11:23:17
220
原创 大模型学完这个项目就可以了!
现在各个大厂都在搞大模型,相关的岗位,以前可能是数据挖掘,现在改成AI数据工程师,大模型测评工程师之类,很多岗位都打上了AI的标签,比如下面某大厂26届的秋招岗位
2025-11-17 11:22:29
173
原创 AI Agent 与 Agentic AI:概念分类、应用与挑战,大模型入门到精通,收藏这篇就足够了!
本文旨在通过系统的文献回顾和分析,为这两个范式提供一个清晰的分类标准,并探讨其架构演进、应用场景、核心挑战与未来方向。
2025-11-17 11:21:52
259
原创 五分钟在家用电脑快速搭建一个具备本地知识库能力的智能问答系统
本文说明如何快速通过AnythingLLM完成一个具备私有知识库能力的智能问答系统的本地化搭建。
2025-11-16 07:30:00
1145
原创 本地实现RAG知识库其实很简单(实践)
在很多大模型平台上其实都已经内置了RAG知识库的功能,通常都是上传文档之后,做好分段切分,然后在调用大模型的时候就会关联上知识库进行输出。
2025-11-15 08:00:00
511
原创 教你如何构造自己的AI知识库(本地知识库+大模型+工作流构建AI应用)
MaxKB支持本地部署,保障安全性,并能够快速实现业务AI助手的上线,提高工作效率与用户体验,助力企业实现“提质增效”的目标。
2025-11-14 11:21:14
693
原创 手把手教你 DeepSeek + AnythingLLM + Ollama 搭建本地知识库
5分钟教会你用 DeepSeek + AnythingLLM + Ollama 打造自己的本地专属知识库,再也不用担心数据泄露!
2025-11-14 11:20:39
938
原创 DeepSeek + AnythingLLM 简单三步搭建个人知识库,现在的我强的可怕!
DeepSeek + AnythingLLM 简单三步搭建个人知识库,现在的我强的可怕!
2025-11-14 11:19:52
734
原创 深刻理解Token:大语言模型(LLM)是如何看待这世界?
理解Token,不仅能帮助我们估算API成本、设计更优的提示词,还能让我们洞察AI的诸多“怪癖”——为什么它不擅长数学,为什么处理某些语言时力不从心,为什么一个简单的拼写错误会难倒一个万亿参数的模型。
2025-11-14 10:55:30
710
原创 技术干货丨AI 大模型微调到底是什么?一篇通俗文帮你弄明白
微调是一个强大的工具,但不是万能药。在考虑微调之前,先试试提示词优化和RAG。只有在确实需要深度定制,且有足够资源投入时,才考虑微调。
2025-11-14 10:54:39
532
原创 GitHub 上 6 万人收藏!RAG 引擎让知识库活起来
刚刚逛 GitHub 的时候,发现了一个超火的开源项目,RAGFlow 这个开源 RAG 引擎能让你的知识库活起来,现在已经获得了 60K 的 Star。
2025-11-13 10:34:44
228
原创 大模型到底是什么?小白也能看懂的科普贴
我们来看看其官方定义:大规模语言模型,是一种由包含数百亿以上参数的深度神经网络构建的语言模型,通常使用自监督学习方法、通过大量无标注文本进行训练。
2025-11-13 10:34:10
411
原创 Dify 企业版:为企业级 AI 应用开发提供全方位保障和支持
作为一款领先的 LLMOps 平台,Dify 不仅提供了功能强大的社区版,更推出了专为企业级需求打造的企业版解决方案。本文将详细介绍 Dify 企业版的核心优势,帮助企业在 AI 应用开发中获得更强大的支持。
2025-11-13 10:33:16
394
原创 从 0.x 到 1.0:LangChain 生产级 Agent 实战指南(含示例代码)
本文基于 LangChain 官网文档与官方博客,系统梳理 0.1、0.2、0.3 到生产级 1.0 的演进脉络、核心架构理念与每个版本重点优化方向。
2025-11-13 10:32:32
295
原创 一文读懂智能体系统:从模型调用到 Agent 编排(LangChain V1.0)
一文读懂智能体系统:从模型调用到 Agent 编排(LangChain V1.0)
2025-11-13 10:31:53
238
原创 手把手教:LangChain+Qwen3搭建本地RAG问答系统,从0到1全流程
本文将带大家从零开始,用LangChain框架整合Qwen3大模型与BGE-M3嵌入模型,手戳一个可本地运行的端到端RAG系统。无需复杂云服务,只需一台带GPU的电脑,就能拥有专属的“文档问答机器人”。
2025-11-12 10:21:53
651
原创 只需四步,完成基于Llama-Factory的模型微调过程
本文记录了本地基于Llama-factory的模型微调过程,方便后续进行复盘。因为只是初次尝试,算是把流程跑通了,没有任何优化调整。
2025-11-12 10:20:44
699
原创 本地部署vLLM+Qwen3:高性能大模型推理引擎,比Ollama强在哪?
今天我们就来深入解析两款主流的大模型推理引擎——vLLM和Ollama,帮助您做出正确的技术选型。
2025-11-12 10:18:26
718
原创 一文搞懂:RAG 信息检索中的 “召回” 到底是什么?
在 RAG 和信息检索领域,“召回” 和 “搜索” 的意思基本能划等号。但大家为啥更爱用 “召回” 而非 “搜索” 呢?关键在于这个词更专业,还能精准戳中这个技术过程的核心内涵。
2025-11-12 10:17:27
893
原创 中科院工程师分享:用Unsloth打造推理增强大模型|低显存、高推理、可复用
今天给大家推荐的这个由和鲸社区创作者 @致Great 分享的项目使用Unsloth训练自己的R1模型,就是一个端到端的强化学习推理模型训练实践,不仅跑得通,还跑得快。
2025-11-11 10:55:02
852
原创 小白大模型课程30分钟:从认知到进阶之路,大模型入门到精通,收藏这篇就足够了!
建立对大模型的正确认知,分清 “神话” 与 “现实”,掌握核心概念;理解大模型的基本工作原理,不用代码也能搞懂 “为什么它能对话”;熟练使用主流大模型工具(ChatGPT、DeepSeek等),提升工作学习效率;掌握 “提示词工程” 基础,让大模型精准满足你的需求;了解大模型开发入门路径,为后续进阶打基础。模块与课时名:你好,大模型 —— 从 “聊天机器人” 到 “通用智能”:大模型的 “成长史”—— 为什么现在火了?:必懂的核心概念 —— 避开 “专业术语陷阱”
2025-11-11 10:54:05
463
原创 基于unsloth的Qwen3 模型高效微调流程,大模型入门到精通,收藏这篇就足够了!
Unsloth 是专为大模型设计的动态量化与微调框架,能显著提升微调速度并降低显存占用。
2025-11-11 10:53:02
304
原创 认识 Unsloth 框架:大模型高效微调的利器,大模型入门到精通,收藏这篇就足够了!
Unsloth 框架正是在这样的需求下应运而生,它提供了一种轻量级、易用且高效的方式来进行 LLaMA、Mistral 等模型的微调,大幅度降低了资源门槛。
2025-11-11 10:52:20
343
原创 大模型+知识库要怎么做才有效果?大模型入门到精通,收藏这篇就足够了!
最近调研了多个知识库产品,主要是因为要通过LLM+RAG的方式实现企业内的知识问答。现在提到知识库,已经不是指飞书,notion,wiki,金山了,更多是说RAG(检索增强生成)知识库,通过LLM+RAG的方式,可以实现知识检索准确率的提高。
2025-11-11 10:51:33
758
原创 传统RAG的局限被打破!三个轻量级智能体分工协作,如何让问答系统更精准?
近期,公司在AI相关项目,尤其是问答系统领域,对回答的准确率和表述质量提出了更高的要求。用户提出的问题不仅限于基础性问题,还可能涉及多样化、复杂化的场景。
2025-11-10 15:31:52
977
原创 LangChain实战入门(四):融合篇——打造有记忆、能协作的AI应用
现在,我们的AI已经具备了很强的单次任务处理能力。但在真实的人机交互中,我们期望的不仅仅是"一问一答",而是连续的、有上下文的对话,是能够记住历史、理解语境的智能体验。
2025-11-10 15:30:45
715
原创 LangChain实战入门(三):Agents实战——让AI成为能思考、会行动的数字员工
这就是Agents(智能体) 的用武之地。在本篇中,我们将探索LangChain最令人兴奋的模块,打造能够自主思考、使用工具、解决问题的AI智能体。
2025-11-10 15:29:51
563
原创 LangChain实战入门(二):RAG实战——赋予大模型你的私有知识库
在本篇中,我们将解锁LangChain最强大的能力之一:Retrieval(检索),并构建一个真正能"读懂"你私有文档的智能问答系统。
2025-11-10 15:29:03
800
原创 LangChain实战入门(一):告别“裸调”API,从Model I/O开始优雅构建AI应用
LangChain的出现,正是为了系统性地解决这些问题。 它不是一个简单的API包装器,而是一个完整的框架(就像Java里面的Spring Boot、Spring Cloud框架),旨在帮助开发者构建由LLM驱动的、端到端的应用程序。
2025-11-10 15:28:08
951
原创 Datawhale开源Self-LLM,人人都能玩转大模型时代!
《开源大模型食用指南》针对中国宝宝量身打造的基于Linux环境快速微调(全参数/Lora)、部署国内外开源大模型(LLM)/多模态大模型(MLLM)教程。
2025-11-09 11:00:00
1199
原创 Python程序员注意:LangChain 1.0已抛弃3.9,你的项目还能跑吗?
LangChain 从一个 GitHub 副业,成长为支撑 Rippling、Cloudflare、Replit 等企业的核心技术栈,证明了开源、开放、用户驱动的力量。
2025-11-09 07:15:00
874
原创 Happy-LLM:大语言模型的快乐进阶之路,大模型入门到精通,收藏这篇就足够了!
Happy-LLM 是由 Datawhale China 发起的开源教学项目,聚焦中文初学者的大语言模型(LLM)学习痛点,以 “降低门槛、强调实践、注重体验、快乐学习” 为核心理念,通过模块化设计与实战脚本,让零基础者也能系统掌握 LLM 全流程技能。
2025-11-08 11:35:32
603
原创 一文搞懂大模型:上下文工程(Context Engineering),大模型入门到精通,收藏这篇就足够了!
上下文工程的核心价值在于解决了一个根本问题:让AI从"每次重新开始"变成"基于理解继续"。通过RAG检索、动态管理、长期记忆等技术组合,我们终于可以与AI建立真正的"工作关系",而不是反复的"重新介绍"。
2025-11-08 11:34:46
866
原创 一文搞懂大模型的部署(Ollama和vLLM),大模型入门到精通,收藏这篇就足够了!
Ollama是一款专注于简化大型语言模型本地部署和运行的开源框架,基于Go语言实现,支持跨平台运行,并以“开箱即用”为核心理念,适合个人开发者和轻量化场景。
2025-11-08 11:33:52
815
原创 基于Dify的RAG知识库搭建,大模型入门到精通,收藏这篇就足够了!
Dify 是一款开源的大模型应用开发平台,旨在帮助开发者快速构建生产级生成式 AI 应用。在Dify 本地化部署中,知识库功能是实现企业级 AI 应用的核心能力。
2025-11-08 11:33:16
658
原创 AI 原生应用架构详解,大模型入门到精通,收藏这篇就足够了!
阿里云在云栖大会重磅发布了《AI 原生应用架构白皮书》,该白皮书覆盖 AI 原生应用的 11 大关键要素,分为 11 章,全面、系统地解构 AI 原生应用架构,包含了 AI 原生应用的 11 大关键要素,模型、框架、提示词、RAG、记忆、工具、网关、运行时、可观测、评估和安全。
2025-11-08 11:32:32
736
原创 RAGFlow:深度文档理解型RAG引擎技术解析
RAGFlow 是聚焦复杂文档解析的开源 RAG 引擎,以 “高精度检索 + 可解释性回复” 为核心,专注解决企业非结构化数据(如扫描件、复杂表格、多图 PDF 等)的智能处理难题,填补了传统 RAG 工具在专业文档理解上的短板。
2025-11-07 11:45:38
708
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅