有 N N N 个物品和一个容量是 V V V的背包。
物品之间具有依赖关系,且依赖关系组成一棵树的形状。如果选择一个物品,则必须选择它的父节点。
如下图所示:
如果选择物品
5
5
5,则必须选择物品
1
1
1 和
2
2
2。这是因为
2
2
2 是
5
5
5 的父节点,
1
1
1 是
2
2
2 的父节点。
每件物品的编号是
i
i
i,体积是
v
i
v_i
vi,价值是
w
i
w_i
wi,依赖的父节点编号是
p
i
p_i
pi。物品的下标范围是
1
…
N
1…N
1…N。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式:
第一行有两个整数 N , V N,V N,V,用空格隔开,分别表示物品个数和背包容量。
接下来有
N
N
N 行数据,每行数据表示一个物品。
第 i 行有三个整数
v
i
,
w
i
,
p
i
v_i,w_i,p_i
vi,wi,pi,用空格隔开,分别表示物品的体积、价值和依赖的物品编号。
如果
p
i
=
−
1
p_i=−1
pi=−1,表示根节点。 数据保证所有物品构成一棵树。
输出格式
输出一个整数,表示最大价值。
数据范围
1
≤
N
,
V
≤
100
1≤N,V≤100
1≤N,V≤100
1
≤
v
i
,
w
i
≤
100
1≤v_i,w_i≤100
1≤vi,wi≤100
父节点编号范围:
内部结点:
1
≤
p
i
≤
N
1≤p_i≤N
1≤pi≤N;
根节点
p
i
=
−
1
p_i=−1
pi=−1;
输入样例:
5 7
2 3 -1
2 2 1
3 5 1
4 7 2
3 6 2
输出样例:
11
对于有依赖的背包问题,不难发现与树形 d p dp dp 有点相似,其本质就是在树上做背包问题,然后这里关键的条件就是,选了子节点必须要选它的父节点,
状态表示: f[i][j]: 在前
i
i
i 个物品中选,总体积不超过
j
j
j 的集合
状态属性: 总价值的最大值
状态计算:
u
u
u 表示父节点
s
o
n
son
son 表示子节点
k
k
k是子节点的体积
f
[
u
]
[
j
]
=
m
a
x
(
f
[
u
]
[
j
]
,
f
[
u
]
[
j
−
k
]
+
f
[
s
o
n
]
[
k
]
)
;
f[u][j] = max(f[u][j], f[u][j-k] + f[son][k]);
f[u][j]=max(f[u][j],f[u][j−k]+f[son][k]);
#include<bits/stdc++.h>
using namespace std;
const int N = 110;
int f[N][N], v[N], w[N], n, m;
int e[N], ne[N], h[N], idx;
void add(int a,int b)
{
e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}
void dfs(int u)
{
for(int i = h[u]; ~i; i = ne[i]) //遍历每个子结点
{
int son = e[i];
dfs(son); //先搜到叶节点
for(int j = m - v[u]; j >= 0; j -- ) //枚举父节点的体积
for(int k = 0; k <= j; k ++ ) //枚举子节点
f[u][j] = max(f[u][j], f[u][j - k] + f[son][k]); //状态转移
}
for(int i = m; i >= v[u]; i -- ) f[u][i] = f[u][i - v[u]] + w[u] ; //当父节点的体积大于v[u] 时 加上该节点的价值
for(int i = 0; i < v[u]; i ++ ) f[u][i] = 0; //小于v[u]时 初始化为0
}
int main()
{
cin >> n >> m; //读入
int root;
memset(h, -1, sizeof h); //初始化单链表
for(int i = 1; i <= n; i ++ ) //读入
{
int p;
cin >> v[i] >> w[i] >> p;
if(p == -1 ) root = i; //获取根节点
else add(p,i); //连边
}
dfs(root); //从根节点开始搜
cout << f[root][m] << '\n';
}