有依赖的背包问题

N N N 个物品和一个容量是 V V V的背包。

物品之间具有依赖关系,且依赖关系组成一棵树的形状。如果选择一个物品,则必须选择它的父节点。
如下图所示:
在这里插入图片描述
如果选择物品 5 5 5,则必须选择物品 1 1 1 2 2 2。这是因为 2 2 2 5 5 5 的父节点, 1 1 1 2 2 2 的父节点。

每件物品的编号是 i i i,体积是 v i v_i vi,价值是 w i w_i wi,依赖的父节点编号是 p i p_i pi。物品的下标范围是 1 … N 1…N 1N
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。

输入格式:

第一行有两个整数 N , V N,V NV,用空格隔开,分别表示物品个数和背包容量。

接下来有 N N N 行数据,每行数据表示一个物品。
第 i 行有三个整数 v i , w i , p i v_i,w_i,p_i vi,wi,pi,用空格隔开,分别表示物品的体积、价值和依赖的物品编号。
如果 p i = − 1 p_i=−1 pi=1,表示根节点。 数据保证所有物品构成一棵树。

输出格式

输出一个整数,表示最大价值。
数据范围

1 ≤ N , V ≤ 100 1≤N,V≤100 1N,V100
1 ≤ v i , w i ≤ 100 1≤v_i,w_i≤100 1vi,wi100
父节点编号范围:
内部结点: 1 ≤ p i ≤ N 1≤p_i≤N 1piN;
根节点 p i = − 1 p_i=−1 pi=1;

输入样例:

5 7
2 3 -1
2 2 1
3 5 1
4 7 2
3 6 2

输出样例:

11

对于有依赖的背包问题,不难发现与树形 d p dp dp 有点相似,其本质就是在树上做背包问题,然后这里关键的条件就是,选了子节点必须要选它的父节点,

状态表示: f[i][j]: 在前 i i i 个物品中选,总体积不超过 j j j 的集合
状态属性: 总价值的最大值
状态计算: u u u 表示父节点 s o n son son 表示子节点 k k k是子节点的体积
f [ u ] [ j ] = m a x ( f [ u ] [ j ] , f [ u ] [ j − k ] + f [ s o n ] [ k ] ) ; f[u][j] = max(f[u][j], f[u][j-k] + f[son][k]); f[u][j]=max(f[u][j],f[u][jk]+f[son][k]);

#include<bits/stdc++.h>

using namespace std;

const int N = 110;

int f[N][N], v[N], w[N], n, m;
int e[N], ne[N], h[N], idx;

void add(int a,int b)
{
    e[idx] = b, ne[idx] = h[a], h[a] = idx ++;
}


void dfs(int u)
{
    for(int i = h[u]; ~i; i = ne[i])  //遍历每个子结点
    {
        int son = e[i];
        dfs(son);   //先搜到叶节点
        
        for(int j = m - v[u]; j >= 0; j -- )   //枚举父节点的体积
        for(int k = 0; k <= j; k ++ )    //枚举子节点
        f[u][j] = max(f[u][j], f[u][j - k] + f[son][k]);   //状态转移
    }
    
    for(int i = m; i >= v[u]; i -- ) f[u][i] =  f[u][i - v[u]] + w[u] ;  //当父节点的体积大于v[u] 时 加上该节点的价值
    
    for(int i = 0; i < v[u]; i ++ ) f[u][i] = 0;  //小于v[u]时 初始化为0
}

int main()
{
    cin >> n >> m;   //读入
    
    int root;
    
    memset(h, -1, sizeof h); //初始化单链表
    
    for(int i = 1; i <= n; i ++ )   //读入
    {
        int p;
        cin >> v[i] >> w[i] >> p;
        if(p == -1 ) root = i;  //获取根节点
        else add(p,i);   //连边
    }
    
    dfs(root);   //从根节点开始搜
    
    cout << f[root][m] << '\n';
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

广西小蒟蒻

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值