LightOJ 1005-Rooks

题意:

给你一些皇后,问总共有多少种方法是的皇后之间互不攻击。
这题和八皇后有点类似,但是我们不能去爆搜,那样肯定会T。于是就要考虑动态规划。
dp[i][j]表示i*i的棋盘中放j个棋子的方法数。首先,如果i<j,那么答案就是0。
我们先考虑i*i的情况下,我们在他的右下角填一个角,那么肯定可以让这个正方形扩大一圈。在扩大的一圈之中。如果不放,dp[i+1][j]+=dp[i][j];如果只放一个,那么有dp[i+1][j+1]+=(2 * (i-j+1) -1)*dp[i][j];如果在多余的边角中放两个,肯定不能放在角落,dp[i][j+2]+=(i-j+1)* ( i-j+1)*dp[i][j];  

代码:

//
//  Created by  CQU_CST_WuErli
//  Copyright (c) 2015 CQU_CST_WuErli. All rights reserved.
//
// #include<bits/stdc++.h>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstdlib>
#include <cctype>
#include <cmath>
#include <string>
#include <vector>
#include <list>
#include <map>
#include <queue>
#include <stack>
#include <set>
#include <algorithm>
#include <sstream>
#define CLR(x) memset(x,0,sizeof(x))
#define OFF(x) memset(x,-1,sizeof(x))
#define MEM(x,a) memset((x),(a),sizeof(x))
#define ALL(x) x.begin(),x.end()
#define AT(i,v) for (auto &i:v)
#define For_UVa if (kase!=1) cout << endl
#define BUG cout << "I am here" << endl
#define lookln(x) cout << #x << "=" << x << endl
#define look(x) cout << #x << "=" << x
#define SI(a) scanf("%d",&a)
#define SII(a,b) scanf("%d%d",&a,&b)
#define SIII(a,b,c) scanf("%d%d%d",&a,&b,&c)
#define Lson l,mid,rt<<1
#define Rson mid+1,r,rt<<1|1
#define Root 1,n,1
#define BigInteger bign
const int MAX_L=2005;// For BigInteger
const int INF_INT=0x3f3f3f3f;
const long long INF_LL=0x7fffffff;
const int MOD=1e9+7;
const double eps=1e-9;
const double pi=acos(-1);
typedef long long  ll;
using namespace std;

const int N=40;
int n,k;
ll dp[N][N];

void init() {
    CLR(dp);
    for (int i=1;i<=30;i++) dp[i][0]=1;
    dp[1][1]=1;
    for (ll i=2;i<=30;i++) {
        for (ll j=1;j<=i;j++) {
            dp[i][j]+=dp[i-1][j]+(2*(i-j)+1)*dp[i-1][j-1];
            if (j>=2) dp[i][j]+=(i-j+1)*(i-j+1)*dp[i-1][j-2];
        }
    }
}

int main(){
#ifdef LOCAL
    freopen("C:\\Users\\john\\Desktop\\in.txt","r",stdin);
//  freopen("C:\\Users\\john\\Desktop\\out.txt","w",stdout);
#endif
    int kase=1;
    init();
    int T_T;
    for (int kase=scanf("%d",&T_T);kase<=T_T;kase++) {
        scanf("%d%d",&n,&k);
        printf("Case %d: %lld\n",kase,dp[n][k]); 
    }
    return 0;
}
阅读更多
版权声明:欢迎转载,转载请注明出处http://blog.csdn.net/cquwel https://blog.csdn.net/CQUWEL/article/details/49952107
文章标签: dp
个人分类: 动态规划
相关热词: lightoj
上一篇LightOJ 1004 - Monkey Banana Problem
下一篇LightOJ 1025 - The Specials Menu
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭