题意:给你一个数组,
v[i]
表示:当i为偶数是表示0的个数,当i为奇数是表示1的个数。然后要你查询一堆区间,是否能找到某个区间
[l,r]
使得0的个数等于
a
,1的个数等于b
题解说的很奇妙,涨了姿势。我们可以这么想,对于一个确定的
a
,那么必然存在一段区间[bl,br]那就可以抽象成一连串离散的点集了(
设a是横坐标,b是纵坐标
)
上图是整理过点集后的图片,一开始都是一条
x,y
递增的线段,每个红点设成
low
点(低点),绿点设成
up
点,蓝色的点可以不管(以
a
开始a结尾的点是红点,
b
开始b结尾的点是绿点)
对于
low
中的点按照
x
排序之后,显然为了让解区间更大,倾向于选择y最低的点,当遍历到更大的
x
,若出现的y较小,因为都是从(0,0)点连过来的,必然可以用此点代替较小的
x
却具有较大的y的点
low
点的整理过程就是上面所描述的,然后是
up
点的整理
同样按照
x
排序,对于同样的x肯定选择更大的点使得解空间最优对于
x
比较大的点,我们选取比当前点集y最大的还要大的点加入点集,可能这里有些读者会存在问题,有些
y
比较大,但是x却比较小的点怎么办。这是不可能存在的,可以证明。若比较大的
a
在此点开始的后面显然不存在,若比较大的a在此点开始的前面,那么此点开始的前面肯定会具有更大的
b
矛盾。所以不存在这样的点。(所谓开始就是在原数组中的开始累加的地方)
处理完两个点集后,我们就可以扫描线了。对于每个查询,找到low中大于等于
a
的点,在up中找到横坐标小于等于
a
的点,然后判断下b是否在二者区间内就行了
#include <algorithm>
#include <cctype>
#include <cmath>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <map>
#include <queue>
#include <string>
#include <sstream>
#include <set>
#include <vector>
#include <stack>
#define ALL(x) x.begin(), x.end()
#define INS(x) inserter(x, x,begin())
#define ll long long
#define CLR(x) memset(x, 0, sizeof x)
using namespace std;
const int inf = 0x3f3f3f3f;
const int MOD = 2e9 + 7;
const int maxn = 5e5 + 10;
const int maxv = 1e3 + 10;
const double eps = 1e-9;
int a[maxv];
struct Point {
int x, y;
Point (int _x = 0, int _y = 0) : x(_x), y(_y) {}
void print() {
printf("%d %d\n", x, y);
}
bool operator< (const Point& rhs) const {
if(x == rhs.x) return y < rhs.y;
return x < rhs.x;
}
bool operator== (const Point& rhs) const {
return x == rhs.x && y == rhs.y;
}
}low[maxn], upp[maxn];
int main() {
#ifdef LOCAL
freopen("C:\\Users\\Administrator\\Desktop\\in.txt", "r", stdin);
#endif
int T;
scanf("%d", &T);
while(T--) {
int n, q;
scanf("%d%d", &n, &q);
for(int i = 0; i < n; i++)
scanf("%d", &a[i]);
int lowCnt = 0, uppCnt = 0;
for(int i = 0; i < n; i++) {
int addx = 0, addy = 0;
for(int j = i; j < n; j++) {
if(j & 1) addy += a[j];
else addx += a[j];
if((i & 1) && (j & 1)) {
upp[uppCnt++] = Point(addx, addy);
}
if(i % 2 == 0 && j % 2 == 0) {
low[lowCnt++] = Point(addx, addy);
}
}
}
sort(low, low+lowCnt);
n = 0;
for(int i = 0, j; i < lowCnt; i = j) {
for(j = i; j < lowCnt && low[i].x == low[j].x; j++);
while(n > 0 && low[n - 1].y >= low[i].y) n--;
low[n++] = low[i];
}
lowCnt = n;
n = 0;
sort(upp, upp+uppCnt);
for(int i = 0, j; i < uppCnt; i = j) {
for(j = i; j < uppCnt && upp[i].x == upp[j].x; j++);
if(!n || upp[n - 1].y < upp[j - 1].y)
upp[n++] = upp[j - 1];
}
uppCnt = n;
for(int i = 1; i <= q; i++) {
int a, b; scanf("%d%d", &a, &b);
int x = upper_bound(upp, upp + uppCnt, Point(a, inf)) - upp;
int y = upper_bound(low, low + lowCnt, Point(a, -inf)) - low;
printf("%c", '0' + (y < lowCnt && upp[x - 1].y >= b && low[y].y <= b));
}
puts("");
}
return 0;
}