hdu 5741 Helter Skelter 官方题解做法的详细证明

题意:给定一个只有0和1组成的字符串(总长度小于等于10^9,不被分割的0或1段 的个数n <= 10^3),进行5*10^5次询问,询问是否存在某个区间,包涵a个0,b个1.


可以用扫描线做,但是官方题解给出另一种做法,官方题解中各种猜想假设,均未证明。强迫症患者表示不能忍。虽然写那么长的脑残证明也没人会看。

官方题解:

可以注意到对于一个固定的aa, 可行的bb一定是一个区间. 如果我们把所有可行的ab(a,b)画在二维平面上, 可以观察到一个有趣的现象: 这个可行区域一定是连通的, 且上下界有一些和xxyy轴平行的线段组成. 如下图所示.

显然, 求出这个上下边界这道题目就搞定了. 考虑求下边界, 观察上图可以知道, 求出所有红色的点就可以确定这个下边界. 同样, 所有绿色的点就可以确定上边界. 一个显然的猜想就是这些边界点肯定是由一些连续的run组成的, 红色点的run肯定是从0开始, 以0结尾, 绿色则是从1开始, 以1结尾. 假装这个猜想是对的, 接下来就是枚举这些连续的run, 然后随便排序下这些点对, 利用类似凸包的方法就可以求出这些红色or绿色的点. 确定了上下边界之后, 对于一个询问

ab(a,b), 就可以二分出对应bb的上下界.

证明:

a为0的个数,b为1的个数

把可行的(a,b)放到二维坐标平面上,横坐标表示0的个数,纵坐标表示1的个数。

下面证明,所有合法(a,b)组成的图形是联通的。并且随某一维坐标的增加,另一维坐标呈单调非减的趋势。 如图



先证明对于一个固定的a,b一定是一段连续区间。


对序列中的0,从左到右进行编号。 令z(i) 表示第i个0.

枚举所有有a个0的区间,采取不断对区间右移的方法。


1.区间最左端0为z(i),则右端0为z(i+a-1)。

令num(i,j)为z(i)和z(j)之间有多少个1

则对于以z(i)为最左端0,以z(i+a-1)为最右端0(显然含有a个0),他的可行的b的区间为

 [num(i,i+a-1) , num(i,i+a-1)+num(i-1,i)+num(i+a,i+a-1)] 令其为 区间i

例如对于  11[001100]11 其合法b的区间为 [2,6]

显然对于一个a,合法的b,是 所有区间i的并。


2.我们看  最左端0为z(i+1)的情况(即把原来z(i),z(i+a-1) 右移), 求得 区间i+1  的左界为 

num(i,i+a-1)-num(i-1,i)+num(i+a,i+a-1),例如 [0*1*{01100]*11*0} ,从[...]区间右移一个0到{...}区间,就是减去左边*..*内的1,加上右边*..*内的1。

显然 区间(i+1)的左界 属于 区间i(即num(i,i+a-1)-num(i-1,i)+num(i+a,i+a-1)显然属于 [num(i,i+a-1) , num(i,i+a-1)+num(i-1,i)+num(i+a,i+a-1)] 

所以所有区间i的并,必然是一段连续的区间。


同理,对于任意的b也有连续的一段合法a。因此所有点的集合,必然是一个联通的图形。


然后证明 随某一维坐标的增加,另一维坐标呈非单调减的趋势。(其实瞎想想也能知道)

对于 a+1的合法b,相当于把之前枚举的 z(i) z(i+a-1) 变成 z(i) z(i+a), 套用之前区间i的公式,发现左界和右界都呈单调非减


同理,对于任何b,a的合法左右界也单调非减。


所以最后的图形就如上图所示。


那么解决本题的关键就转化为求图中所有的绿点和红点(即上下界)

结合上述证明,发现红点的状态必然是区间两端都是0,绿点的状态是区间两端都是1.


至于为什么是绿点和红点,而不是蓝点,这和该点出现的状态有关。绿点和红点比蓝点更加容易求得。绿点是同样1的个数下使得0最少的状态,结合上面说绿点的状态是区间两端都是1,所以与区间两端相邻的两个点都是0(或没有)。例如  000[11..000…11]000。

同理红点的状态是区间两端都是0,与区间相邻的两个点都是1,例如111[00.11..00]111

这就可以直接用题中所给区段来暴力枚举满足条件的状态,再从这些状态中找到绿色和红色的点。(因为所给区段就是这样分割的)

最后对于每个询问a,b, 只要二分查找对于a的合法b区间,判断是否合法即可。

#include<stdio.h>
#include<iostream>
#include<string.h>
#include<string>
#include<ctype.h>
#include<math.h>
#include<set>
#include<map>
#include<vector>
#include<queue>
#include<bitset>
#include<algorithm>
#include<time.h>
using namespace std;
void fre() { freopen("c://test//input.in", "r", stdin); freopen("c://test//output.out", "w", stdout); }
#define MS(x,y) memset(x,y,sizeof(x))
#define MC(x,y) memcpy(x,y,sizeof(x))
#define MP(x,y) make_pair(x,y)
#define ls o<<1
#define rs o<<1|1
typedef long long LL;
typedef unsigned long long UL;
typedef unsigned int UI;
template <class T1, class T2>inline void gmax(T1 &a, T2 b) { if (b>a)a = b; }
template <class T1, class T2>inline void gmin(T1 &a, T2 b) { if (b<a)a = b; }
const int N = (1e6)+10, M = 0, Z = 1e9 + 7, ms63 = 0x3f3f3f3f;
int casenum, casei;

int n,m,run[1010];
pair<int ,int>lowp[N],upp[N];
char ans[500010];
void solve()
{
    scanf("%d%d",&n,&m);
    for(int i = 0; i < n; ++i) scanf("%d",&run[i]);
    
    int x,y,cl = 0,cu = 0;
    for(int i = 0; i < n; ++i)
    {
        x=y=0;
        for(int j = i; j < n; ++j)
        {
            if(j%2 == 0) x+=run[j];
            else y+=run[j];
            if((i%2 == 0 && j%2 == 0) ) lowp[cl++] = make_pair(x,y);
            if((i%2 == 1 && j%2 == 1) ) upp[cu++] = make_pair(x,y);
        }
    }
    
    sort(lowp,lowp+cl); n = 0;
    for(int i = 0,j; i < cl; i = j)
    {
        for(j = i; j < cl && lowp[j].first == lowp[i].first; ++j);
        while(n > 0 && lowp[n-1].second >= lowp[i].second) --n;
        lowp[n++] = lowp[i];
    }
    cl = n;
    
    sort(upp,upp+cu); n = 0;
    for(int i = 0,j; i < cu; i = j)
    {
        for(j = i; j < cu && upp[j].first == upp[i].first; ++j);
        if(!n || upp[j-1].second > upp[n-1].second) upp[n++] = upp[j-1];
    }
    cu = n;
    
    int a,b,low,up;
    for(int i = 0; i < m; ++i)
    {
        scanf("%d%d",&a,&b);
        low = lower_bound(lowp,lowp+cl,make_pair(a,-ms63))-lowp;
        up = lower_bound(upp,upp+cu,make_pair(a,ms63))-upp;
        if(low < cl && b >= lowp[low].second && b <= upp[up-1].second) ans[i] = '1';
        else ans[i] = '0';
    }
    ans[m] = 0; puts(ans);
}
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)solve();
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值