1898: [Zjoi2005]Swamp 沼泽鳄鱼
Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 984 Solved: 557
[ Submit][ Status][ Discuss]
Description
潘塔纳尔沼泽地号称世界上最大的一块湿地,它地位于巴西中部马托格罗索州的南部地区。每当雨季来临,这里碧波荡漾、生机盎然,引来不少游客。为了让游玩更有情趣,人们在池塘的中央建设了几座石墩和石桥,每座石桥连接着两座石墩,且每两座石墩之间至多只有一座石桥。这个景点造好之后一直没敢对外开放,原因是池塘里有不少危险的食人鱼。豆豆先生酷爱冒险,他一听说这个消息,立马赶到了池塘,想做第一个在桥上旅游的人。虽说豆豆爱冒险,但也不敢拿自己的性命开玩笑,于是他开始了仔细的实地勘察,并得到了一些惊人的结论:食人鱼的行进路线有周期性,这个周期只可能是2,3或者4个单位时间。每个单位时间里,食人鱼可以从一个石墩游到另一个石墩。每到一个石墩,如果上面有人它就会实施攻击,否则继续它的周期运动。如果没有到石墩,它是不会攻击人的。借助先进的仪器,豆豆很快就摸清了所有食人鱼的运动规律,他要开始设计自己的行动路线了。每个单位时间里,他只可以沿着石桥从一个石墩走到另一个石墩,而不可以停在某座石墩上不动,因为站着不动还会有其它危险。如果豆豆和某条食人鱼在同一时刻到达了某座石墩,就会遭到食人鱼的袭击,他当然不希望发生这样的事情。现在豆豆已经选好了两座石墩Start和End,他想从Start出发,经过K个单位时间后恰好站在石墩End上。假设石墩可以重复经过(包括Start和End),他想请你帮忙算算,这样的路线共有多少种(当然不能遭到食人鱼的攻击)。
Input
输入文件共M + 2 + NFish行。第一行包含五个正整数N,M,Start,End和K,分别表示石墩数目、石桥数目、Start石墩和End石墩的编号和一条路线所需的单位时间。石墩用0到N–1的整数编号。第2到M + 1行,给出石桥的相关信息。每行两个整数x和y,0 ≤ x, y ≤ N–1,表示这座石桥连接着编号为x和y的两座石墩。第M + 2行是一个整数NFish,表示食人鱼的数目。第M + 3到M + 2 + NFish行,每行给出一条食人鱼的相关信息。每行的第一个整数是T,T = 2,3或4,表示食人鱼的运动周期。接下来有T个数,表示一个周期内食人鱼的行进路线。 如果T=2,接下来有2个数P0和P1,食人鱼从P0到P1,从P1到P0,……; 如果T=3,接下来有3个数P0,P1和P2,食人鱼从P0到P1,从P1到P2,从P2到P0,……; 如果T=4,接下来有4个数P0,P1,P2和P3,食人鱼从P0到P1,从P1到P2,从P2到P3,从P3到P0,……。豆豆出发的时候所有食人鱼都在自己路线上的P0位置,请放心,这个位置不会是Start石墩。
Output
输出路线的种数,因为这个数可能很大,你只要输出该数除以10000的余数就行了。 【约定】 1 ≤ N ≤ 50 1 ≤ K ≤ 2,000,000,000 1 ≤ NFish ≤ 20
Sample Input
0 2
2 1
1 0
0 5
5 1
1 4
4 3
3 5
1
3 0 5 1
Sample Output
【样例说明】
时刻 0 1 2 3
食人鱼位置 0 5 1 0
路线一 1 2 0 5
路线二 1 4 3 5
HINT
Source
#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
#include<bitset>
#include<algorithm>
#include<cstring>
#include<map>
#include<stack>
#include<set>
#include<cmath>
#include<ext/pb_ds/priority_queue.hpp>
using namespace std;
const int mo = 10000;
int n,m,s,t,k,F,Fish[22][5],posi[22],Ans[55],ans[55];
bool Danger[22][55];
vector <int> v[55];
struct R{
int a[55][55];
R(){memset(a,0,sizeof(a));}
R operator * (const R &b) {
R c;
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
for (int l = 0; l < n; l++) {
c.a[i][j] += a[i][l]*b.a[l][j];
c.a[i][j] %= mo;
}
return c;
}
}A,B[13];
R ksm(R now,int y)
{
R ret;
for (int i = 0; i < n; i++)
ret.a[i][i] = 1;
for (; y; y >>= 1) {
if (y&1) ret = ret*now;
now = now*now;
}
return ret;
}
int main()
{
#ifdef DMC
freopen("DMC.txt","r",stdin);
#endif
cin >> n >> m >> s >> t >> k;
while (m--) {
int x,y; scanf("%d%d",&x,&y);
v[x].push_back(y);
v[y].push_back(x);
}
cin >> F;
for (int i = 1; i <= F; i++) {
scanf("%d",&Fish[i][0]);
for (int j = 1; j <= Fish[i][0]; j++)
scanf("%d",&Fish[i][j]);
posi[i] = 1;
}
for (int i = 0; i <= 12; i++)
for (int j = 1; j <= F; j++) {
Danger[i][Fish[j][posi[j]]] = 1;
++posi[j];
if (posi[j] > Fish[j][0])
posi[j] = 1;
}
for (int T = 1; T <= 12; T++)
for (int i = 0; i < n; i++)
for (int j = 0; j < v[i].size(); j++) {
int from = v[i][j];
if (Danger[T-1][from] || Danger[T][i]) continue;
B[T].a[from][i] = 1;
}
Ans[s] = 1;
for (int i = 0; i < n; i++)
A.a[i][i] = 1;
for (int T = 1; T <= 12; T++)
A = A*B[T];
A = ksm(A,k/12);
k %= 12;
for (int i = 1; i <= k; i++)
A = A*B[i];
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++) {
ans[i] += Ans[j]*A.a[j][i];
ans[i] %= mo;
}
cout << ans[t];
return 0;
}