1821: [JSOI2010]Group 部落划分 Group
Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2047 Solved: 968
[ Submit][ Status][ Discuss]
Description
聪聪研究发现,荒岛野人总是过着群居的生活,但是,并不是整个荒岛上的所有野人都属于同一个部落,野人们总是拉帮结派形成属于自己的部落,不同的部落之间则经常发生争斗。只是,这一切都成为谜团了——聪聪根本就不知道部落究竟是如何分布的。 不过好消息是,聪聪得到了一份荒岛的地图。地图上标注了N个野人居住的地点(可以看作是平面上的坐标)。我们知道,同一个部落的野人总是生活在附近。我们把两个部落的距离,定义为部落中距离最近的那两个居住点的距离。聪聪还获得了一个有意义的信息——这些野人总共被分为了K个部落!这真是个好消息。聪聪希望从这些信息里挖掘出所有部落的详细信息。他正在尝试这样一种算法: 对于任意一种部落划分的方法,都能够求出两个部落之间的距离,聪聪希望求出一种部落划分的方法,使靠得最近的两个部落尽可能远离。 例如,下面的左图表示了一个好的划分,而右图则不是。请你编程帮助聪聪解决这个难题。
Input
第一行包含两个整数N和K(1< = N < = 1000,1< K < = N),分别代表了野人居住点的数量和部落的数量。
接下来N行,每行包含两个正整数x,y,描述了一个居住点的坐标(0 < =x, y < =10000)
Output
输出一行,为最优划分时,最近的两个部落的距离,精确到小数点后两位。
Sample Input
4 2
0 0
0 1
1 1
1 0
0 0
0 1
1 1
1 0
Sample Output
1.00
HINT
Source
首先n没有很大,,可以枚举出任意两个野人的距离,就看做一条边吧
如果需要答案为k,那么边权小于k的每对野人一定要在同一个部落,,
这当然是用并查集维护
因此,只要尽量多地加边,得到的划分一定是最优的
找到那个分界点,就是加了这条边以后,部落数小于k,这条边不加,之前的边都加
这时候,应该在剩下的边中找到权值最小,沟通两部落的边,这就是答案了
一开始直接输出分界点前面的一条边。。智商捉鸡
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<cstdio>
using namespace std;
const int maxn = 1010;
const int maxm = maxn*maxn;
typedef double DB;
struct E{
int x,y; DB w; E(){}
E(int x,int y,DB w): x(x),y(y),w(w){}
bool operator < (const E &b) const {return w < b.w;}
}edgs[maxm];
int n,tot,k,cnt,x[maxn],y[maxn],fa[maxn];
int getfa(int x) {return x == fa[x]?x:fa[x] = getfa(fa[x]);}
int main()
{
#ifdef DMC
freopen("DMC.txt","r",stdin);
#endif
cin >> n >> k; cnt = n;
for (int i = 1; i <= n; i++) {
fa[i] = i;
scanf("%d%d",&x[i],&y[i]);
}
for (int i = 1; i < n; i++)
for (int j = i + 1; j <= n; j++) {
int X = x[i] - x[j];
int Y = y[i] - y[j];
edgs[++tot] = E(i,j,sqrt((DB)(X*X + Y*Y)));
}
sort(edgs + 1,edgs + tot + 1);
for (int i = 1; i <= tot; i++) {
int fx = getfa(edgs[i].x);
int fy = getfa(edgs[i].y);
if (fx == fy) continue;
--cnt;
if (cnt < k) break;
fa[fx] = fy;
}
for (int i = 1; i <= tot; i++) {
int fx = getfa(edgs[i].x);
int fy = getfa(edgs[i].y);
if (fx != fy) {printf("%.2lf",edgs[i].w); return 0;}
}
return 0;
}