3809: Gty的二逼妹子序列

3809: Gty的二逼妹子序列

Time Limit: 80 Sec   Memory Limit: 28 MB
Submit: 1381   Solved: 399
[ Submit][ Status][ Discuss]

Description

Autumn和Bakser又在研究Gty的妹子序列了!但他们遇到了一个难题。
对于一段妹子们,他们想让你帮忙求出这之内美丽度∈[a,b]的妹子的美丽度的种类数。
为了方便,我们规定妹子们的美丽度全都在[1,n]中。
给定一个长度为n(1<=n<=100000)的正整数序列s(1<=si<=n),对于m(1<=m<=1000000)次询问“l,r,a,b”,每次输出sl...sr中,权值∈[a,b]的权值的种类数。

Input

第一行包括两个整数n,m(1<=n<=100000,1<=m<=1000000),表示数列s中的元素数和询问数。
第二行包括n个整数s1...sn(1<=si<=n)。
接下来m行,每行包括4个整数l,r,a,b(1<=l<=r<=n,1<=a<=b<=n),意义见题目描述。
保证涉及的所有数在C++的int内。
保证输入合法。

Output

对每个询问,单独输出一行,表示sl...sr中权值∈[a,b]的权值的种类数。

Sample Input

10 10
4 4 5 1 4 1 5 1 2 1
5 9 1 2
3 4 7 9
4 4 2 5
2 3 4 7
5 10 4 4
3 9 1 1
1 4 5 9
8 9 3 3
2 2 1 6
8 9 1 4

Sample Output

2
0
0
2
1
1
1
0
1
2

HINT

样例的部分解释:


5 9 1 2

子序列为4 1 5 1 2

在[1,2]里的权值有1,1,2,有2种,因此答案为2。


3 4 7 9

子序列为5 1

在[7,9]里的权值有5,有1种,因此答案为1。


4 4 2 5

子序列为1

没有权值在[2,5]中的,因此答案为0。


2 3 4 7

子序列为4 5

权值在[4,7]中的有4,5,因此答案为2。


建议使用输入/输出优化。

Source

[ Submit][ Status][ Discuss]




如果用莫队处理询问,能用树状数组做到O(m*sqrt(n)*logn)

不过这样显然是T飞的。。。用个小技巧

对于权值分块维护,这样单次查询能O(sqrt(n)),修改O(1)

总复杂度就能降一个log了

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<vector>
#include<queue>
#include<set>
#include<map>
#include<stack>
#include<bitset>
#include<ext/pb_ds/priority_queue.hpp>
using namespace std;
 
const int maxn = 1E5 + 10;
const int maxm = 1E6 + 10;
 
int n,m,Sqrt,sum[320],cnt[maxn],ans[maxm],s[maxn];
 
int Getpos(int x)
{
    return (x % Sqrt == 0)?x / Sqrt:x / Sqrt + 1;
}
 
struct Query{
    int l,r,a,b,num; Query(){}
    Query(int l,int r,int a,int b,int num): l(l),r(r),a(a),b(b),num(num){}
    bool operator < (const Query &B) const
    {
        if (Getpos(l) < Getpos(B.l)) return 1;
        if (Getpos(l) > Getpos(B.l)) return 0;
        return r < B.r;
    }
}Q[maxm];
 
void Add(int x)
{
    if (!cnt[x]) ++sum[Getpos(x)];
    ++cnt[x];
}
 
void Dec(int x)
{
    if (cnt[x] == 1) --sum[Getpos(x)];
    --cnt[x];
}
 
int getint()
{
    char ch = getchar();
    int ret = 0;
    while (ch < '0' || '9' < ch) ch = getchar();
    while ('0' <= ch && ch <= '9')
        ret = ret*10 + ch - '0',ch = getchar();
    return ret;
}
 
int main()
{
    #ifdef DMC
        freopen("DMC.txt","r",stdin);
    #endif
     
    n = getint(); m = getint(); Sqrt = sqrt(n);
    for (int i = 1; i <= n; i++) s[i] = getint();
    for (int i = 1; i <= m; i++)
    {
        int l,r,a,b;
        l = getint(); r = getint();
        a = getint(); b = getint();
        Q[i] = Query(l,r,a,b,i);    
    }
    sort(Q + 1,Q + m + 1);
    int L = 1,R = 0;
    for (int i = 1; i <= m; i++)
    {
        while (R < Q[i].r) Add(s[++R]);
        while (R > Q[i].r) Dec(s[R--]);
        while (L < Q[i].l) Dec(s[L++]);
        while (L > Q[i].l) Add(s[--L]);
        int Ans = 0,pa = Getpos(Q[i].a),pb = Getpos(Q[i].b);
        if (pa == pb)
        {
            for (int j = Q[i].a; j <= Q[i].b; j++) Ans += (cnt[j])?1:0;
        }
        else
        {
            for (int j = pa + 1; j < pb; j++) Ans += sum[j];
            for (int j = Q[i].a,t = pa*Sqrt; j <= t; j++) Ans += (cnt[j])?1:0;
            for (int j = pb*Sqrt - Sqrt + 1; j <= Q[i].b; j++) Ans += (cnt[j])?1:0;
        }
        ans[Q[i].num] = Ans;
    }
    for (int i = 1; i <= m; i++) printf("%d\n",ans[i]);
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值