2561: 最小生成树

2561: 最小生成树

Time Limit: 10 Sec   Memory Limit: 128 MB
Submit: 1724   Solved: 829
[ Submit][ Status][ Discuss]

Description

 给定一个边带正权的连通无向图G=(V,E),其中N=|V|,M=|E|,N个点从1到N依次编号,给定三个正整数u,v,和L (u≠v),假设现在加入一条边权为L的边(u,v),那么需要删掉最少多少条边,才能够使得这条边既可能出现在最小生成树上,也可能出现在最大生成树上?

 

Input


   第一行包含用空格隔开的两个整数,分别为N和M;
  接下来M行,每行包含三个正整数u,v和w表示图G存在一条边权为w的边(u,v)。
  最后一行包含用空格隔开的三个整数,分别为u,v,和 L;
  数据保证图中没有自环。
 

Output

 输出一行一个整数表示最少需要删掉的边的数量。

Sample Input

3 2
3 2 1
1 2 3
1 2 2

Sample Output

1

HINT

对于20%的数据满足N ≤ 10,M ≤ 20,L ≤ 20;

  对于50%的数据满足N ≤ 300,M ≤ 3000,L ≤ 200;

  对于100%的数据满足N ≤ 20000,M ≤ 200000,L ≤ 20000。

Source

[ Submit][ Status][ Discuss]



参考bzoj2521的建图。。。bzoj2521

边集要开四倍。。。。一开始只开了两倍。。。结果WA不止。。。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
 
const int maxn = 2E4 + 20;
const int maxm = 8E5 + 80;
const int INF = 1E9 + 233;
 
struct E{
    int to,cap,flow; E(){}
    E(int to,int cap,int flow): to(to),cap(cap),flow(flow){}
}edgs[maxm];
 
int n,m,cnt,s,t,A[maxm],B[maxm],w[maxm],cur[maxn],L[maxn];
 
vector <int> v[maxn];
queue <int> Q;
 
void Add(int x,int y,int cap)
{
    v[x].push_back(cnt); edgs[cnt++] = E(y,cap,0);
    v[y].push_back(cnt); edgs[cnt++] = E(x,0,0);
}
 
bool BFS()
{
    for (int i = 1; i <= n; i++) L[i] = 0;
    L[s] = 1; Q.push(s);
    while (!Q.empty())
    {
        int k = Q.front(); Q.pop();
        for (int i = 0; i < v[k].size(); i++)
        {
            E e = edgs[v[k][i]];
            if (e.cap == e.flow || L[e.to]) continue;
            L[e.to] = L[k] + 1; Q.push(e.to);
        }
    }
    return L[t];
}
 
int Dinic(int x,int a)
{
    if (x == t) return a; int flow = 0;
    for (int &i = cur[x]; i < v[x].size(); i++)
    {
        E &e = edgs[v[x][i]];
        if (e.cap == e.flow || L[e.to] != L[x] + 1) continue;
        int f = Dinic(e.to,min(a,e.cap - e.flow));
        if (!f) continue; e.flow += f; flow += f;
        a -= f; edgs[v[x][i]^1].flow -= f; if (!a) return flow;
    }
    if (!flow) L[x] = -1; return flow;
}
 
int MaxFlow()
{
    int ret = 0;
    while (BFS())
    {
        for (int i = 1; i <= n; i++) cur[i] = 0;
        ret += Dinic(s,INF);
    }
    return ret;
}
 
int getint()
{
    char ch = getchar(); int ret = 0;
    while (ch < '0' || '9' < ch) ch = getchar();
    while ('0' <= ch && ch <= '9')
        ret = ret * 10 + ch - '0',ch = getchar();
    return ret;
}
 
int main()
{
    #ifdef DMC
        freopen("DMC.txt","r",stdin);
    #endif
     
    cin >> n >> m;
    for (int i = 1; i <= m; i++)
        A[i] = getint(),B[i] = getint(),w[i] = getint();
    ++m; A[m] = getint(); B[m] = getint(); w[m] = getint();
    for (int i = 1; i < m; i++)
        if (w[i] < w[m]) Add(A[i],B[i],1),Add(B[i],A[i],1);
    s = A[m]; t = B[m]; int Ans = MaxFlow();
    cnt = 0; for (int i = 1; i <= n; i++) v[i].clear();
    for (int i = 1; i < m; i++)
        if (w[i] > w[m]) Add(A[i],B[i],1),Add(B[i],A[i],1);
    cout << Ans + MaxFlow() << endl;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值