4825: [Hnoi2017]单旋

4825: [Hnoi2017]单旋

Time Limit: 10 Sec   Memory Limit: 256 MB
Submit: 391   Solved: 185
[ Submit][ Status][ Discuss]

Description

H 国是一个热爱写代码的国家,那里的人们很小去学校学习写各种各样的数据结构。伸展树(splay)是一种数据
结构,因为代码好写,功能多,效率高,掌握这种数据结构成为了 H 国的必修技能。有一天,邪恶的“卡”带着
他的邪恶的“常数”来企图毁灭 H 国。“卡”给 H 国的人洗脑说,splay 如果写成单旋的,将会更快。“卡”称
“单旋 splay”为“spaly”。虽说他说的很没道理,但还是有 H 国的人相信了,小 H 就是其中之一,spaly 马
上成为他的信仰。 而 H 国的国王,自然不允许这样的风气蔓延,国王构造了一组数据,数据由 m 个操作构成,
他知道这样的数据肯定打垮 spaly,但是国王还有很多很多其他的事情要做,所以统计每个操作所需要的实际代价
的任务就交给你啦。
数据中的操作分为五种:
1. 插入操作:向当前非空 spaly 中插入一个关键码为 key 的新孤立节点。插入方法为,先让 key 和根比较,如果 
key 比根小,则往左子树走,否则往右子树走,如此反复,直到某个时刻,key 比当前子树根 x 小,而 x 的左子
树为空,那就让 key 成为 x 的左孩子; 或者 key 比当前子树根 x 大,而 x 的右子树为空,那就让 key 成为 
x 的右孩子。该操作的代价为:插入后,key 的深度。特别地,若树为空,则直接让新节点成为一个单个节点的树
。(各节点关键码互不相等。对于“深度”的解释见末尾对 spaly 的描述)。
2. 单旋最小值:将 spaly 中关键码最小的元素 xmin 单旋到根。操作代价为:单旋前 xmin 的深度。
(对于单旋操作的解释见末尾对 spaly 的描述)。
3. 单旋最大值:将 spaly 中关键码最大的元素 xmax 单旋到根。操作代价为:单旋前 xmax 的深度。
4. 单旋删除最小值:先执行 2 号操作,然后把根删除。由于 2 号操作之后,根没有左子树,所以直接切断根和右子
树的联系即可(具体见样例解释)。 操作代价同 2 号操 作。
5. 单旋删除最大值:先执行 3 号操作,然后把根删除。 操作代价同 3 号操作。
对于不是 H 国的人,你可能需要了解一些 spaly 的知识,才能完成国王的任务:
a. spaly 是一棵二叉树,满足对于任意一个节点 x,它如果有左孩子 lx,那么 lx 的关键码小于 x 的关键码。
如果有右孩子 rx,那么 rx 的关键码大于 x 的关键码。
b. 一个节点在 spaly 的深度定义为:从根节点到该节点的路径上一共有多少个节点(包括自己)。
c. 单旋操作是对于一棵树上的节点 x 来说的。一开始,设 f 为 x 在树上的父亲。如果 x 为 f 的左孩子,那么
执行 zig(x) 操作(如上图中,左边的树经过 zig(x) 变为了右边的树),否则执行 zag(x) 操作(在上图中,将
右边的树经过 zag(f) 就变成了左边的树)。每当执 行一次 zig(x) 或者 zag(x),x 的深度减小 1,如此反复,
直到 x 为根。总之,单旋 x 就是通过反复执行 zig 和 zag 将 x 变为根。

Input

第一行单独一个正整数 m。
接下来 m 行,每行描述一个操作:首先是一个操作编号 c∈[1,5],即问题描述中给出的五种操作中的编号,若 c
 = 1,则再输入一个非负整数 key,表示新插入节点的关键码。
1≤m≤10^5,1≤key≤10^9
所有出现的关键码互不相同。任何一个非插入操作,一定保证树非空。在未执行任何操作之前,树为空

Output

输出共 m 行,每行一个整数,第 i 行对应第 i 个输入的操作的代价。

Sample Input

5
1 2
1 1
1 3
4
5

Sample Output

1
2
2
2
2

HINT

Source

[ Submit][ Status][ Discuss]



徒手模拟一下旋转最小值操作就能大概搞清楚怎么回事了

实际上就是最小值变成了根,最小值的右儿子变成了它父亲的左儿子

所以每次旋转操作改变的边的数量不多

大力LCT维护一下就行了

插入的话,找到前屈后继

这两个点在树中肯定是相邻的

显然新节点插在较深节点的下方

#include<iostream>
#include<cstdio>
#include<cstring>
#include<stack>
#include<set>
using namespace std;
 
const int maxn = 1E5 + 10;
 
struct data{
    int Num,key; data(){}
    data(int Num,int key): Num(Num),key(key){}
    bool operator < (const data &B) const {return key < B.key;}
};
 
int n,m,cnt,rt,typ[maxn],Key[maxn],fa[maxn],pfa[maxn],key[maxn],siz[maxn],rev[maxn],ch[maxn][2];
 
set <data> s;
stack <int> stk;
 
inline void pushdown(int x)
{
    if (!rev[x]) return;
    if (ch[x][0]) rev[ch[x][0]] ^= 1;
    if (ch[x][1]) rev[ch[x][1]] ^= 1;
    swap(ch[x][0],ch[x][1]); rev[x] = 0;
}
 
inline void maintain(int x)
{
    siz[x] = siz[ch[x][0]] + siz[ch[x][1]] + 1;
}
 
inline void rotate(int x)
{
    int y = fa[x],z = fa[y];
    pfa[x] = pfa[y]; pfa[y] = 0;
    int d = ch[y][0] == x ? 0 : 1;
    ch[y][d] = ch[x][d^1]; ch[x][d^1] = y; maintain(y);
    if (ch[y][d]) fa[ch[y][d]] = y; fa[y] = x; maintain(x);
    fa[x] = z; if (z) ch[z][ch[z][1] == y] = x,maintain(z);
}
 
inline void splay(int x)
{
    for (int z = x; z; z = fa[z]) stk.push(z);
    while (!stk.empty()) pushdown(stk.top()),stk.pop();
    for (int y = fa[x]; y; rotate(x),y = fa[x])
        if (fa[y]) rotate((ch[y][0] == x) ^ (ch[fa[y]][0] == y) ? x : y);
}
 
inline void Access(int u)
{
    for (int v = 0; u; v = u,u = pfa[u])
    {
        splay(u);
        if (ch[u][1]) pfa[ch[u][1]] = u,fa[ch[u][1]] = 0;
        if (v) pfa[v] = 0,fa[v] = u; ch[u][1] = v; maintain(u);
    }
}
 
inline int Query(int x)
{
    Access(x); splay(x); return siz[x];
}
 
inline void ChangeRoot(int x)
{
    Access(x); splay(x); rev[x] ^= 1;
}
 
inline void Link(int x,int y)
{
    ChangeRoot(y); pfa[y] = x; Access(y); splay(y);
}
 
inline void Cut(int x,int y)
{
    ChangeRoot(x); Access(y); splay(y);
    ch[y][0] = 0; fa[x] = 0; maintain(y);
}
 
inline int Find(int x,int k)
{
    pushdown(x);
    int pos = siz[ch[x][0]] + 1;
    if (pos == k) return x;
    if (pos > k) return Find(ch[x][0],k);
    else return Find(ch[x][1],k - pos);
}
 
inline void Insert()
{
    set <data> :: iterator it = s.begin();
    if (key[cnt] < (*it).key) Link((*it).Num,cnt);
    else
    {
        it = s.end(); it--;
        if (key[cnt] > (*it).key) Link((*it).Num,cnt);
        else
        {
            it = s.lower_bound(data(cnt,key[cnt]));
            int ida = (*it).Num,La = Query(ida);
            --it; int idb = (*it).Num,Lb = Query(idb);
            Link(La > Lb ? ida : idb,cnt);
        }
    }
}
 
inline void ChangeRoot_Min(int now)
{
    set <data> :: iterator it;
    Access(now); splay(now);
    int A = Find(ch[now][0],siz[ch[now][0]]);
    Cut(A,now); it = s.begin(); ++it;
    if ((*it).Num != A)
    {
        Access((*it).Num); splay((*it).Num);
        int B = Find((*it).Num,2);
        Cut(now,B); Link(A,B);
    }
    Link(now,rt); ChangeRoot(now); rt = now;
}
 
inline void ChangeRoot_Max(int now)
{
    set <data> :: iterator it;
    Access(now); splay(now);
    int A = Find(ch[now][0],siz[ch[now][0]]);
    Cut(A,now); it = s.end(); --it; --it;
    if ((*it).Num != A)
    {
        Access((*it).Num); splay((*it).Num);
        int B = Find((*it).Num,2);
        Cut(now,B); Link(A,B);
    }
    Link(now,rt); ChangeRoot(now); rt = now;
}
 
inline int getint()
{
    char ch = getchar(); int ret = 0;
    while (ch < '0' || '9' < ch) ch = getchar();
    while ('0' <= ch && ch <= '9')
        ret = ret * 10 + ch - '0',ch = getchar();
    return ret;
}
 
int main()
{
    #ifdef DMC
        freopen("DMC.txt","r",stdin);
        freopen("1.out","w",stdout);
    #endif
     
    m = getint();
    for (int I = 1; I <= m; I++)
    {
        set <data> :: iterator it; int typ = getint();
        if (typ == 1)
        {
            key[++cnt] = getint();
            if (n) Insert(); else rt = cnt,siz[rt] = 1;
            ++n; s.insert(data(cnt,key[cnt])); printf("%d\n",Query(cnt));
        }
        else if (typ == 2)
        {
            it = s.begin(); int now = (*it).Num;
            printf("%d\n",Query(now));
            if (rt != now) ChangeRoot_Min(now);
        }
        else if (typ == 3)
        {
            it = s.end(); --it; int now = (*it).Num;
            printf("%d\n",Query(now));
            if (rt != now) ChangeRoot_Max(now);
        }
        else if (typ == 4)
        {
            it = s.begin(); int now = (*it).Num;
            printf("%d\n",Query(now));
            if (rt != now) ChangeRoot_Min(now);
            --n; s.erase(it); if (!n) continue;
            it = s.end(); --it; Access((*it).Num); splay((*it).Num);
            now = Find((*it).Num,2); Cut(rt,now); ChangeRoot(now); rt = now;
        }
        else
        {
            it = s.end(); --it; int now = (*it).Num;
            printf("%d\n",Query(now));
            if (rt != now) ChangeRoot_Max(now);
            --n; s.erase(it); if (!n) continue;
            it = s.begin(); Access((*it).Num); splay((*it).Num);
            now = Find((*it).Num,2); Cut(rt,now); ChangeRoot(now); rt = now;
        }
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值