本文来源于阿里云-云栖社区,原文点击这里。
正在谷歌实习的慕尼黑工业大学博士在读生 Philip Haeusser 的研究领域是计算机视觉。在这篇访谈中,他谈到了自己在谷歌的实习项目、经历、收获以及如何处理实习和自己博士研究课题的关系。
我是 Philip,慕尼黑工业大学博士研究生三年级在读,师从 Daniel Cremers。我的研究领域为计算机视觉,即教计算机理解图像及视频的学科。对于计算机而言,图像及视频只不过是巨大数量的无意义数字的组合。如果把它们以色彩表现出来,人类则很容易分辨图片中的内容。
Philip Haeusser
为了教会计算机做同样的事情,我训练神经网络,即一组可以被理解为是“迷你视觉皮层”的模型。目的是为了将组成图像的数字赋予某种意义,如“猫”这样的标签。神经网络在这方面表现惊人。我研究的问题包括光流(从视频的一帧是如何切换到下一帧的)以及域适配(如何使用将一种域的标签,如手写体的图像,运用到另一种域,如谷歌街景里的门牌号)等。
研究以外的时间,我会在我自己的 YouTube 频道“Phil’s Physics”上演示一些实验和分享一些科学知识。
我于2014年在加州大学圣克鲁兹分校获得物理专业硕士学位。当时我在一个跨学科研究小组里参与盲人视网膜移植的项目。我们所做的实验之一需要处理大量的数据,这些数据都非常昂贵,但还无法全部被我们所使用,因为我们的数据处理程序不够复杂。我就是在那时起开始涉猎机器学习和神经网络。我立即被深深吸引并开始联系相关领域的教授。我非常荣幸向 Daniel Cremers 展示了我的工作,并在之后开始读他的博士。
深度学习领域发展速度迅猛。几乎每周都有一篇有关神经网络或训练技巧的突破性的新论文发表,而论文作者多来自谷歌,这就使得我对于谷歌在这一领域所做的工作充满了兴趣。在一次夏校的课程里我遇到了 Oliver Bousquet,他对谷歌大脑团队的描述令人惊叹。他也提到了谷歌的实习项目,我立即就申请了。我的导师对此非常支持,能够获取不同的见解,认识更多的人,进行更多的交流总是好的,尤其是在深度学习这样一个全新的领域。此外,在许多大学里计算力无法达到的实验在谷歌都可以获得相关资源并得以完成。
我有幸与 DeepDream 创始人之一 Alexander Mordvintsev一起工作。所做的项目涉及用未标记数据和半监督学习训练神经网络的新方法。