MCP详解:手把手教你理解和如何使用各种开源MCP服务

MCP(Model Context Protocol,模型上下文协议)是由 Anthropic 公司在 2024 年 11 月推出的一种开放协议,旨在统一规范大语言模型(LLM)与外部数据源和工具之间的通信。它就像 AI 界的 USB-C 接口,让 AI 模型能够以标准化的方式连接到各种外部资源。

本文目录

一、MCP 的架构

二、MCP 的工作流程

三、MCP 的优势

四、MCP 的使用场景

五、MCP使用方式

5.1 安装uv

1、macOS 和 Linux 系统

2、Windows 系统

3、验证安装

5.2 Cherry Studio 配置mcp服务

1、下载客户端

2、配置大模型api

3、配置mcp服务协议

 4、mcp服务使用

 5、mcp服务使用演示 

5.3 Vscode 配置mcp服务

1、插件安装

2、插件api配置

3、mcp服务配置

4、mcp服务配置

5、mcp服务使用

六、总结


一、MCP 的架构

MCP 采用客户端-服务器架构,核心组件包括:

  • MCP 主机(Host):运行 LLM 的应用程序,如 Claude Desktop、IDE 或 AI 工具。
  • MCP 客户端(Client):在主机应用程序内部运行,与 MCP 服务器建立 1:1 连接。
  • MCP 服务器(Server):提供对外部数据源和工具的访问,响应客户端的请求。
  • 本地数据源(Local Data Source):如本地数据库、文件系统等。
  • 远程服务(Remote Service):如通过 API 连接的外部系统。

二、MCP 的工作流程

  1. 主机启动客户端:MCP 主机(如 Claude Desktop)启动内置的 MCP 客户端。
  2. 客户端连接服务器:客户端通过 MCP 协议连接到 MCP 服务器。
  3. 服务器提供资源:MCP 服务器提供可用的外部工具和数据源。
  4. LLM 使用资源生成响应:LLM 使用这些资源生成更准确、更丰富的响应。

三、MCP 的优势

  • 标准化交互:通过统一的协议,简化了 LLM 与外部资源的集成,无需为每个工具单独开发接口。
  • 降低开发成本:开发者可以快速构建功能丰富的 AI 应用,特别是对于小型创业公司和个人开发者。
  • 提升模型能力:让 AI 模型能够访问实时数据,执行更复杂的任务,如文件操作、数据库查询等。

四、MCP 的使用场景

MCP可以连接各种工具,实现工作的流程化处理,这里也介绍一个MCP服务开源项目,有很多有意思的MCP服务:GitHub - punkpeye/awesome-mcp-servers: A collection of MCP servers.

  • 本地文件操作:AI 可以直接读取、编辑和管理本地文件,如整理会议记录、生成文档摘要等。
  • 数据库查询:通过自然语言指令,AI 能够调用 MCP 服务器,将指令转化为 SQL 语句,查询数据库。
  • 调用外部 API:连接到各种外部服务,如天气查询、地图服务等。例如,通过高德地图的 MCP,可以检索附近的咖啡馆并生成网页。
  • 自动化开发流程:在软件开发中,AI 可以通过 MCP 调用 GitHub、Jenkins 等工具,实现代码合并、构建镜像等操作。

五、MCP使用方式

5.1 安装uv

目前大部分开源的mcp服务都是通过uv命令进行的实现,所以首先我们需要安装下uv命令,以下是不同系统安装 uv 命令的方法:

1、macOS 和 Linux 系统

  • 使用官方独立安装脚本:在终端中运行以下命令

curl -LsSf https://astral.sh/uv/install.sh | sh

如果系统没有 curl,可以使用 wget

wget -qO- https://astral.sh/uv/install.sh | sh
  • 通过包管理器安装:使用 Homebrew(适用于 macOS)
brew install uv

  • 使用 pip
pip install uv

2、Windows 系统

  • 使用官方独立安装脚本:在 PowerShell 中运行以下命令:
powershell -ExecutionPolicy ByPass -c "irm https://astral.sh/uv/install.ps1 | iex"
  • 通过包管理器安装

使用 winget

winget install --id=astral-sh.uv  -e

使用 pip

pip install uv

    3、验证安装

    安装完成后,可以在终端或命令提示符中运行以下命令来验证 uv 是否安装成功:

    uv --version

    5.2 Cherry Studio 配置mcp服务

    1、下载客户端

    进入Cherry Studio官方网站:Cherry Studio 官方网站 - 全能的AI助手,下载对应系统版本的Cherry Studio。

    2、配置大模型api

    3、配置mcp服务协议

    安装打开后的界面如下图所示

    点击设置- MCP 服务器 - 编辑按钮

    将开源的MCP服务协议内容复制进去

    • https://github.com/blazickjp/arxiv-mcp-server,这里以arxiv-mcp-server服务为例,用来查询论文和分析论文的mcp服务,下一篇文章专门讲解下如何使用。下面是arxiv-mcp-server服务的具体命令。
    {
        "mcpServers": {
            "arxiv-mcp-server": {
                "command": "uv",
                "args": [
                    "tool",
                    "run",
                    "arxiv-mcp-server",
                    "--storage-path", "/path/to/paper/storage"
                ]
            }
        }
    }
    • 这里面注意uv命令的具体地址,可以使用which uv 来确认下uv命令的具体地址

     4、mcp服务使用

    使用时,要在对话框激活 MCP 服务器

     5、mcp服务使用演示 

    5.3 Vscode 配置mcp服务

    1、插件安装

    在vscode插件市场安装Cline Chinese插件,是Cline 插件的汉化版

    2、插件api配置

    点击Cline插件的右上角的设置按钮

     根据自己的情况配置对应的API,这里我选择使用的是OpenRouter里的免费api接口,不知道如何使用OpenRouter的,可以参考我的这篇文章:OpenRouter:AI 模型的超级连接器,手把手教你如何使用!-CSDN博客

    3、mcp服务配置

    点击MCP服务器按钮,选择已安装,点击配置MCP服务器

    4、mcp服务配置

    在这里可以将想要用的mcp服务协议复制进去

    5、mcp服务使用

    配置好后,我们可以进行使用,这里依旧以arxiv-mcp-server服务为例,这里我让模型给我找几篇ranekr相关的论文

    六、总结

    MCP 作为一种开放协议,为 AI 模型与外部世界的连接提供了标准化的解决方案。它不仅降低了开发门槛,还极大地扩展了 AI 应用的边界。无论是开发者还是普通用户,都可以通过 MCP 更高效地利用 AI 技术,实现更多智能化的功能。

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包
    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值