题目描述
输入
只有一组测试数据
第一行是两个整数N,M,其中N表示士兵的个数(1<N<1000000),M表示指令的条数。(1<M<100000)
随后的一行是N个整数,ai表示第i号士兵杀敌数目。(0<=ai<=100)
随后的M行每行是一条指令,这条指令包含了一个字符串和两个整数,首先是一个字符串,如果是字符串QUERY则表示南将军进行了查询操作,后面的两个整数m,n,表示查询的起始与终止士兵编号;如果是字符串ADD则后面跟的两个整数I,A(1<=I<=N,1<=A<=100),表示第I个士兵新增杀敌数为A.
输出
对于每次查询,输出一个整数R表示第m号士兵到第n号士兵的总杀敌数,每组输出占一行
样例输入
样例输出
提示
来源
南将军手下有N个士兵,分别编号1到N,这些士兵的杀敌数都是已知的。
小工是南将军手下的军师,南将军经常想知道第m号到第n号士兵的总杀敌数,请你帮助小工来回答南将军吧。
南将军的某次询问之后士兵i可能又杀敌q人,之后南将军再询问的时候,需要考虑到新增的杀敌数。
第一行是两个整数N,M,其中N表示士兵的个数(1<N<1000000),M表示指令的条数。(1<M<100000)
随后的一行是N个整数,ai表示第i号士兵杀敌数目。(0<=ai<=100)
随后的M行每行是一条指令,这条指令包含了一个字符串和两个整数,首先是一个字符串,如果是字符串QUERY则表示南将军进行了查询操作,后面的两个整数m,n,表示查询的起始与终止士兵编号;如果是字符串ADD则后面跟的两个整数I,A(1<=I<=N,1<=A<=100),表示第I个士兵新增杀敌数为A.
5 6 1 2 3 4 5 QUERY 1 3 ADD 1 2 QUERY 1 3 ADD 2 3 QUERY 1 2 QUERY 1 5
6 8 8 20
NYOJ
线段树区段求和,单点更新
#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <string>
#include <vector>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define inf 0x3f3f3f3f
#define eps 1e-10
#define maxn 1<<21
#define zero(a) fabs(a)<eps
#define Min(a,b) ((a)<(b)?(a):(b))
#define Max(a,b) ((a)>(b)?(a):(b))
#define pb(a) push_back(a)
#define mem(a,b) memset(a,b,sizeof(a))
#define LL long long
#define lson step<<1
#define rson step<<1|1
#define MOD 1000000009
#define sqr(a) ((a)*(a))
using namespace std;
struct no{
int left;
int right;
int value;
}node[maxn];
int father[maxn];
void Build(int i , int l , int r) {
node[i].left = l;
node[i].right = r;
node[i].value = 0;
if(l == r) {
father[l] = i;
return ;
}
Build((i<<1) , l , (r+l)/2);
Build((i<<1)+1 , 1+(r+l)/2, r);
return ;
}
//单点更新,求区段和
void UpdateSum(int ri) {
if(ri == 1) return ;
int fi = ri/2;
node[fi].value = node[fi*2].value + node[2*fi+1].value;
UpdateSum(fi);
}
//单点更新求区段最大值
void UpdateMax(int ri) {
if(ri == 1) return ;
int fi = ri/2;
int a = node[fi<<1].value;
int b = node[(fi<<1)+1].value;
node[ri].value = Max(a , b);
UpdateMax(ri/2);
}
//单点更新求区段最小值
void UpdateMin(int ri) {
if(ri == 1) return ;
int fi = ri/2;
int a = node[fi<<1].value;
int b = node[(fi<<1)+1].value;
node[ri].value = Min(a , b);
UpdateMin(ri/2);
}
int sm = 0, mx = -inf, mn = inf;//sm区间和,mx区间最大值,mn区间最小值
void Query(int i, int l, int r) {
if(node[i].left == l && node[i].right == r) {
sm += node[i].value;
// mx = Max(mx , node[i].value);
// mn = Min(mn , node[i].value);
return ;
}
i = i<<1; //左子节点
if(l <= node[i].right) {
if(r <= node[i].right)
Query(i, l, r);
else
Query(i, l, node[i].right);
}
i++; //右子节点
if(r >= node[i].left) {
if(l >= node[i].left)
Query(i, l, r);
else
Query(i, node[i].left, r);
}
return ;
}
int main() {
int N, M, v;
int m , n;
scanf("%d%d",&N,&M);
Build(1, 1, N);
for(int i = 1; i <= N; i++) {
scanf("%d",&v);
node[father[i]].value += v;
UpdateSum(father[i]);
// node[father[i]].value = v;
// UpdateMax(father[i]);
// node[father[i]].value = v;
// UpdateMin(father[i]);
}
char op[20];
while(M--) {
getchar(); //去掉上面的回车
scanf("%s",op);
scanf("%d%d",&m,&n);
sm = 0;
if(!strcmp(op,"QUERY")) {
Query(1, m, n);
printf("%d\n",sm);
}
else if(!strcmp(op,"ADD")) {
node[father[m]].value += n;
UpdateSum(father[m]);
// node[father[m]].value = n;
// UpdateMan(father[m]);
}
}
return 0;
}