1. (3')年龄
今天蒜头君带着花椰妹和朋友们一起聚会,当朋友们问起年龄的时候,蒜头君打了一个哑谜(毕竟年龄是女孩子的隐私)说:“我的年龄是花椰妹年龄个位数和十位数之和的二倍”。
花椰妹看大家一脸懵逼,就知道大家也不知道蒜头君的年龄,便连忙补充道:“我的年龄是蒜头君个位数和十位数之和的三倍”。
请你计算:蒜头君和花椰妹年龄一共有多少种可能情况?
提醒:两位的年龄都是在 [10,100) 这个区间内。
解析:年龄范围已经给出,直接进行暴力枚举即可。
#include <stdio.h>
int main() {
int sum = 0;
for(int i = 10; i < 100; i++) { //suan tou
for(int j = 10; j < 100; j++) { //huaye
if(i == 2*(j/10+j%10) && j == 3*(i/10+i%10)) {
sum++;
}
}
}
printf("%d\n", sum);
return 0;
}
正确答案为:1
2. (7')开关灯
蒜头君今天回到了老家的大宅院,老家的灯还是那中拉线的灯(拉一次为亮,再拉一次就灭),蒜头君觉得无聊。把 1000 盏灯 3的倍数拉了一次,5的倍数拉了一次,7的倍数拉了一次(灯的编号从 1-1000,灯的初始状态都是亮的)。这个时候蒜头君在想还剩下几盏灯还在亮着?
提示:请不要输出多余的符号。
解析:把灯的初始状态设置为0,然后从1号灯遍历到1000号灯,进行判断,如果是3,5,7的倍数,就进行翻转。
具体代码如下:
#include <stdio.h>
#include <string.h>
int main() {
int a[1001];
int sum = 0;
memset(a, 0, sizeof(a)); //0为亮, 1为灭
for(int i = 1; i <= 1000; i++) {
if(i%3 == 0) {
a[i] = 1^a[i];
}
if(i%5 == 0) {
a[i] = 1^a[i];
}
if(i%7 == 0) {
a[i] = 1^a[i];
}
}
for(int i = 1; i <= 1000; i++) {
if(!a[i]) sum++;
}
printf("%d\n", sum);
}
正确答案:571
3. (9')U型数字
最近蒜头君喜欢上了U型数字,所谓U型数字,就是这个数字的每一位先严格单调递减,后严格单调递增。比如 212 就是一个U型数字,但是 333, 98, 567, 31313,就不是U型数字。
现在蒜头君问你,[1,100000]有多少U型数字?
提示:请不要输出多余的符号。
解析:这是一道模拟题,先将数字拆解,然后判断各个位数的严格单调递减,记录到递减的位置,然后从此位置进行严格单调递增判断,两个数字相等,或者一直严格单调递增,或者一直严格单调递减,或者成M,W形式,都为错误。
具体请看代码:
#include <stdio.h>
int nm[10];
int num[10];
int solve(int n) {//求各个数的前缀和
int t = 0;
while(n) {
nm[t++] = n%10;
n /= 10;
}
for(int i = 0; i < t; i++) {//从高位到低位
num[i] = nm[t-i-1];
}
return t;//返回数的长度
}
int solve1(int n) {//判断严格的单调递减
int p = num[0], t = -1;
for(int i = 1; i < n; i++) {
if(num[i] < p)
p = num[i];
else {
if(i != 1 && num[i] > p)//判断
t = i-1;
break;
}
}
return t;
}
int main() {
int sum = 0, k;
for(int i = 100; i <= 100000; i++) {
k = 1;
int t = solve(i);
int t1 = solve1(t);
if(t1 == -1) continue;
int p = num[t1];
for(int j = t1+1; j < t; j++) {
if(num[j] > p) p = num[j];
else k = 0;
}
if(k) sum++;
}
printf("%d\n", sum);
return 0;
}
正确答案:8193