Python 使用Pandas在原有Excel文件中创建子表格

本文介绍如何使用Python的pandas库在现有的Excel文件中新增子表,而非创建全新的文件。通过提供的代码示例,读者可以了解到具体的实现步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在原有的Excel文件中新创建一个子表格而不是重新创建一个新的Excel文件,具体实现如下:

import pandas as pd

int creatExcelSheet(excelDataFilePath:str, data:dict, sheet_name:str):
    """
        # excelDataFilePath: 原始表格文件
        # data: 自定义的数据,只要满足DataFrame格式的要求即可
        # sheet_name 需要创建的子表名称
    """
    df = pd.DataFrame(data=data)
    writer = pd.ExcelWriter(excelDataFilePath, mode='a')
    df.to_excel(writer, sheet_name=sheet_name)
    # 将数据写入原有表格的sheet_name子表中
    writer.save()

if __name__ == '__main__':
    excelDataFilePath = r'D:\data\excelTestFile.xlsx'
    data = {'A':'a', 'B':'b};
    sheet_name = 'sheet2'
    creatExcelSheet(excelDataFilePath, data, sheet_name)

    

### 使用 Python Pandas 删除 Excel 文件指定的两列 在使用 `pandas` 处理 Excel 数据时,可以通过操作 DataFrame 来实现删除特定列的功能。以下是具体方法: #### 1. 导入必要库 为了处理 Excel 文件,需要导入 `pandas` 和其他可能需要用到的模块。 ```python import pandas as pd ``` #### 2. 加载 Excel 文件到 DataFrame 中 加载 Excel 文件可以使用 `pd.read_excel()` 函数[^1]。 ```python file_path = r"D:\William\Projects\python\获取股票数据\股票数据.xlsx" df = pd.read_excel(file_path) ``` #### 3. 删除指定的两列 要删除 DataFrame 中的指定列,可以使用 `.drop()` 方法。该方法允许通过列名来移除不需要的数据列。 假设需要删除名为 `"ColumnA"` 和 `"ColumnB"` 的两列,则代码如下所示: ```python columns_to_drop = ["ColumnA", "ColumnB"] df_cleaned = df.drop(columns=columns_to_drop, axis=1) ``` 上述代码中,参数 `axis=1` 表明操作是在列维度上执行;如果省略此参数,默认会报错或者尝试按照行索引来删除数据。 #### 4. 将修改后的 DataFrame 保存回 Excel 文件 完成对原始 DataFrame 的编辑之后,可将其重新写回到一个新的或覆盖原有Excel 文件中。 ```python output_file_path = r"D:\William\Projects\python\获取股票数据\清理后的股票数据.xlsx" df_cleaned.to_excel(output_file_path, index=False) ``` 这里设置 `index=False` 是为了避免将默认索引作为额外的一列存储至最终文件当中。 --- ### 总结 整个流程包括以下几个核心部分: - **读取**:利用 `pd.read_excel()` 把目标 Excel 文档转换成 DataFrame; - **删除**:调用 `.drop()` 并传入选定的列名称列表以剔除非必需字段; - **导出**:借助 `to_excel()` 实现更新后表格存盘动作。 这样即可高效地运用 Pandas 库达成所需功能。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值