1. 质数的判定——试除法
算法思路:根据质数的定义暴力枚举,因为一个数的约数是成对出现的,所以只用枚举到√n
时间复杂度:O(sqrt(n))
例题: 给定n个正整数ai,判定每个数是否是质数。
输入格式
第一行包含整数n。
接下来n行,每行包含一个正整数ai。
输出格式
共n行,其中第 i 行输出第 i 个正整数ai是否为质数,是则输出“Yes”,否则输出“No”。
数据范围
1≤n≤100,
1≤ai≤2∗109
输入样例:
2
2
6
输出样例:
Yes
No
#include<iostream>
using namespace std;
bool is_prime(int n)
{
if(n < 2) return false;
for(int i = 2; i < n / i; i++) // 不用sqrt(n)是因为减少时间
// 不用i*i < n是应为防止i过大时导致溢出
if(n % i == 0) return false;
return true;
}
int main()
{
int n;
cin >> n;
while(n--)
{
int x;
cin >> x;
if(is_prime(x)) printf("Yes\n");
else printf("No\n");
}
return 0;
}
2. 分解质因数——试除法
暴力算法:从小到大枚举n的所有约数,对每一个约数进行连除并记录指数
优化算法:由于大于√n的因子仅可能有一个,所以可以只枚举到√n最后独立判断是否有大于√n的因子。
时间复杂度:O(logn)~O(sqrt(n))
例题: 给定n个正整数ai,将每个数分解质因数,并按照质因数从小到大的顺序输出每个质因数的底数和指数。
输入格式
第一行包含整数n。
接下来n行,每行包含一个正整数ai。
输出格式
对于每个正整数ai,按照从小到大的顺序输出其分解质因数后,每个质因数的底数和指数,每个底数和指数占一行。
每个正整数的质因数全部输出完毕后,输出一个空行。
数据范围
1≤n≤100,
1≤ai≤2∗109
输入样例:
2
6
8
输出样例:
2 1
3 1
2 3
#include<iostream>
using namespace std;
void divide(int n)
{
for(int i = 2; i <= n / i; i++)
{
if(n % i == 0) // 每次除i时,n中都不包含2~i-1中的质因数,如果n能被i整除,那么i中也将不含2~i-1中的质因数所以i一定是质数
{
int s = 0;
while(n % i == 0)
{
n /= i;
s++;
}
printf("%d %d\n", i, s);
}
}
if(n > 1) printf("%d 1\n", n); // 如果可以被小于n/i的质数分解完那么n=1,如果不行最后剩下的n就是大于n/i的因数
puts("");
}
int main()
{
int n;
cin >> n;
while(n--)
{
int x;
cin >> x;
divide(x);
}
return 0;
}
3. 筛质数
基本思想:对于一个数列,从前往后依次删掉这个数的倍数,那么数列中剩下的数就是质数
朴素算法:O(nlogn)
void get_primes(int n)
{
for(int i = 2; i <= n; i++)
{
if(!st[i])
{
primes[cnt++] = i; //如果一个数没有被删除,把他加到质数数组中
}
for(int j = i + i; j <= n; j += i) st[j] = true; // 删除数列中i的倍数
}
}
埃式筛法:O(nloglogn)
优化:因为每个合数都可以被分解质因数,所以每次只需要筛掉质数的倍数即可
void get_primes(int n)
{
for(int i = 2; i <= n; i++)
{
if(!st[i])
{
primes[cnt++] = i; //如果一个数没有被删除,把他加到质数数组中
for(int j = i + i; j <= n; j += i) st[j] = true;
}
}
}
线性筛法:O(n)
优化:每次只用合数最小的那个质数筛掉他
void get_primes(int n)
{
for(int i = 2; i <= n; i++)
{
if(!st[i]) primes[cnt++] = i;
for(int j = 0; primes[j] <= n / i; j++)
{
st[primes[j] * i] = true;
if(i % primes[j] == 0) break;
}
}
}
为什么每个合数都可以被筛去:因为每个合数都存在最小质因数,所以把已经确定的质数从小到大枚举一定有一个是某个合数的最小质因数。所以primes[j] * i一定是在i后面的合数。为了只筛去以primes[j]为最小质因数的合数,所以要判断i % primes[j]是否为零,如果不为零,那么primes[j]一定小于i的最小质因数,那么继续枚举下一个质数;如果为零,那么primes[j]就是i的最小质因数,就退出循环(否则下次筛去的合数primes[j] * i就不是以primes[j]为最小质因数的合数了,就会出现重复)。
例题: 给定一个正整数n,请你求出1~n中质数的个数。
输入格式
共一行,包含整数n。
输出格式
共一行,包含一个整数,表示1~n中质数的个数。
数据范围
1≤n≤106
输入样例:
8
输出样例:
4
#include<iostream>
using namespace std;
const int N = 100010;
int primes[N], cnt;
bool st[N];
void get_primes(int n)
{
for(int i = 2; i <= n; i++)
{
if(!st[i]) primes[cnt++] = i;
for(int j = 0; primes[j] <= n / i; j ++)
{
st[primes[j] * i] = true;
if(i % primes[j] == 0) break;
}
}
}
int main()
{
int n;
cin >> n;
get_primes(n);
cout << cnt << endl;
return 0;
}