算法导论第三版 习题5.2-1和5.2-2 HIRE-ASSISTANT问题

本文详细解析了算法导论中的HIRE-ASSISTANT问题,讨论了在应聘者随机顺序出现的情况下,正好雇佣一次和雇佣n次的概率。对于习题5.2-1,解释了雇佣一次的概率为1/n,雇佣n次的概率为1/n!。在5.2-2中,分析了雇用两次的情况,通过排列组合计算得出雇用两次的概率为1/n*(1/(n-1)+1/(n-2)+...+1/1)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

HIRE-ASSISTANT简述:你需要雇佣一个办公助理,然后每次面试一个应聘者。如果该应聘者比之前的办公助理更优秀,就雇佣该应聘者为新的办公助理,同时辞去上一个办公助理。第一个应聘者总会被雇佣。

假设总共要面试n个应聘者,并且给应聘者以能力进行排序,每个应聘者都有一一对应的能力值rank。n个应聘者的名次rank数组为[1..n]。

 

5.2-1 在HIRE-ASSISTANT中,假设应聘者以随机的顺序出现,你正好雇佣一次的概率是多少?正好雇佣n次的概率是多少?

 

首先,正好雇佣一次,则必然是最佳助理rank=n出现在第一次面试,所以P=1/n。因为应聘者随机顺序出现,最佳助理等可能的出现在每一次面试,所以最佳助理第一次面试的概率P=1/n。

 

用指示器随机变量分析:

假设Xi表示第i个应聘者被雇佣的事件,则

Xi=I{应聘者i被雇佣}=

应聘者i被雇佣,是正好应聘者i比从1到i-1的每个应聘者优秀,即应聘者i的rank值最大。又应聘者是随机出现的,所以前i个应聘者任意一个都是等可能最优秀的,所以应聘者i最优秀的概率是1/i。因此,E[Xi]=Pr{应聘者i被雇佣}=1/i。同

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值