银行业长期以来依靠客户标签和画像技术构建个性化服务,但传统标签体系往往存在静态、孤立、无法深度挖掘非结构化数据的局限。随着DeepSeek等大模型技术的成熟应用,银行业迎来了从“静态标签管理”迈向“动态智能决策”的历史性机遇。以下是笔者建议银行可发力探索的六大业务应用场景:
Part.
01
智能客户洞察场景
非结构化数据标签挖掘
例如:
-
解析客户经理工作日志(如“客户提到孩子将赴美留学”),自动生成“潜在跨境金融需求”标签
-
分析手机银行APP语音咨询记录,识别“养老理财咨询倾向性”并关联客户生命周期阶段
-
挖掘社交媒体提及的生活事件(如房产交易、家庭变动),匹配对应金融需求
-
通过OCR技术识别上传票据信息,自动标记企业经营周期和资金需求
动态心理画像构建
例如:
-
通过对话文本分析客户风险偏好变化(如从“保本为主”到询问“科创板打新”)
-
情感分析识别财富焦虑指数,预警高净值客户流失风险
-
追踪客户投资决策过程中的犹豫点,构建金融决策心理图谱
-
分析客户交易时机选择模式,识别情绪驱动型vs理性分析型投资行为
Part.
02
智能精准营销场景
生成式推荐系统
例如:
-
基于客户持仓、交易行为、风险偏好,生成个性化投资建议文本
-
自动生成多模态营销素材(如根据“养老客群”标签生成短视频脚本)
-
针对特定生命事件(如购房、子女教育)自动生成金融规划方案
-
根据客户交互习惯(简洁vs详尽)调整推荐内容呈现形式
2. 营销策略动态优化
例如:
-
实时A/B测试不同话术转化效果(如对比“收益率强调”vs “风险规避强调”)
-
通过因果推断模型量化各渠道贡献度,提出动态调整资源分配建议
-
预测客户生命周期价值(LTV)变化趋势,优化获客成本投入
-
分析营销触达时间与客户活跃度关联,优化沟通时机
Part.
03
智能风险管控场景
关联风险图谱构建
例如:
-
整合工商、司法、交易数据构建企业关联图谱
-
识别隐形实际控制人(如通过多层股权穿透发现关联企业)
-
识别跨境贸易背景造假(对比报关单、物流数据与资金流匹配度)
风险早期预警系统
例如:
-
分析企业财报文本,识别潜在经营风险信号词
-
整合内外部数据源,构建动态风险评分模型
-
监测供应链上下游变动对核心企业的风险传导
-
基于历史违约案例,训练识别相似风险模式的预警模型
Part.
04
智能财富管理场景
1. 对话式资产配置
例如:
-
通过自然对话理解客户需求("我想为孙子准备教育金"希望五年后积累200万教育金,能接受中等风险,系统:建议每月定投2.5万于股债平衡型组合,历史达标概率92%)
-
动态调用标签数据(风险承受能力、流动性需求)生成配置方案
-
提供交互式“假设情景”分析(“如果我提前退休5年,资产配置应如何调整?”)
-
结合宏观经济预测,提供资产配置动态再平衡建议
2. 市场事件应激响应
例如:
-
当美联储加息时,自动标记受影响的外贸企业客户
-
实时生成汇率避险方案推送给相关客户
-
分析地缘政治事件对投资组合的潜在影响,提供调整建议
-
监测客户关注的特定资产价格异动,自动生成分析报告
Part.
05
智能运营服务场景
全渠道服务一致性管理
例如:
-
跨渠道会话状态同步(手机APP断点续接到柜面系统)
-
根据客户画像自动调整交互方式(老年客户自动切换语音导航)
-
智能识别客户意图,在不同渠道保持服务连贯性
-
分析客户偏好渠道和时间段,优化服务资源配置
智能工单路由优化路径
例如:
-
客户投诉内容自动分类(账户类/理财类/外汇类)
-
结合客服专员能力标签进行精准派单
-
预测工单复杂度,智能分配处理时长和资源
-
基于历史解决方案库,推荐最佳处理路径
Part.
06
监管合规场景
自动化监管报送
例如:
-
自动提取1104报表所需标签数据(如普惠金融贷款客户分类)
-
生成报送说明文档(含数据溯源链条)
-
监控监管指标变动趋势,预警潜在不合规风险
-
智能解读最新监管政策,自动映射至内部流程调整需求
智能合规审核
例如:
-
理财产品说明书合规性检查(对照资管新规逐条核验)
-
客户适当性评估自动化(匹配风险等级与产品风险标签)
-
监控异常交易模式,智能识别可疑洗钱行为
-
自动检测营销文案合规性,避免违规承诺或误导表述
智能化转型的新起点
站在数字化转型的十字路口,我不禁感慨:银行业正迎来一场由大模型驱动的智能化革命。通过DeepSeek等大模型的深度应用,银行不再只是简单地存储和分析数据,而是能够真正“理解”客户,实现从静态标签到动态智能决策的质变。
这六大应用场景仅仅是冰山一角。随着技术的不断迭代和实践的深入,我们有理由相信,未来的银行将呈现出更加智能化、个性化和高效率的服务形态。大模型赋能下的银行业,将打破传统金融服务的边界,真正实现"以客户为中心"的无缝服务体验。
作为数字化转型的见证者和参与者,我期待与各位读者一起,继续探索AI与金融深度融合的无限可能。技术永远只是手段,为客户创造真正的价值才是银行智能化转型的终极目标。
那么,如何系统的去学习大模型LLM?
作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。
所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。
由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
👉大模型学习指南+路线汇总👈
我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
👉①.基础篇👈
基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
👉②.进阶篇👈
接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
👉③.实战篇👈
实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
👉④.福利篇👈
最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!