该文件详细分析了金融、医疗、政务、人力资源以及智能助理等领域中大模型的安全实践案例,探讨了安全性、可靠性、可控性技术的最新研究进展,并针对大模型的风险挑战提出了系统化的应对策略。报告还展望了大模型技术的未来发展趋势,并提出了包含政府监管、生态培育、企业自律、人才培养、测试验证在内的“五维一体”治理框架,旨在为确保大模型技术的健康发展和安全可靠应用提供指导和建议。
报告亮点
-
行业实践与案例分析:深入探讨了金融、医疗、政务、人力资源、智能助理等领域大模型的安全实践案例。
-
安全技术研究进展:全面分析了大模型在安全性、可靠性、可控性方面的技术研究和进展。
-
风险挑战应对策略:针对大模型的风险挑战,提出了系统化构建安全体系屏障的策略。
-
未来展望:对大模型技术的未来发展进行了展望,并提出了平衡机遇与安全风险的挑战。
-
治理建议:提出了“五维一体”的治理框架,包括政府监管、生态培育、企业自律、人才培养、测试验证等方面的建议。
-
安全评测技术:探讨了大模型安全评测技术的研究和进展,以及如何构建安全评测链路。
-
数据安全与隐私保护:强调了在大模型应用中数据安全和隐私保护的重要性,并提出了相应的技术和管理措施。
-
法规风险管理:分析了大模型应用中潜在的法规风险,并提出了相应的管理策略。
-
伦理安全问题:讨论了大模型技术发展中可能遇到的伦理问题,包括知识产权争端、教育诚信危机等。
-
“以人为本”的治理理念:强调了在大模型安全建设中应始终坚持“以人为本,AI 向善”的治理理念。
附资料节选(文末下载完整PDF)