- 博客(6)
- 收藏
- 关注
原创 将引用作为函数参数笔记
然而,地址运算符(&)使得按地址传递(swapp(&wallet1,&wallet2))一目了然(类型声明int * p表明,p是一个int指针,因此与p对应的参数应地址,如(&wallet1)。但在swapv中,变量a和b是复制了wallet1和wallet2的值的新变量,因此交换a和b的值并不会影响wallet1和wallet2的值。在swapr中,变量a和b是wallet1和wallet2的别名,所以交换a和b的值相当于交换wallet1和wallet2的值;摘自C++ Primer Plus。
2023-05-27 16:24:52 111 1
原创 关于bazel构建文件出现的release-62-1.tar.gz错误解决
前言 最近在做模型量化过程中,需要用到bazel去构建但报了个错误(前提:已经安装与tensorflow对应的bazel版本) 查了网上许多帖子大致的方法都是:1.搭建一个本地的http服务 2.自己下载release-62-1.tar.gz并放到指定位置。整个流程我自己也试了一遍,第一个步骤是基本一致的,但第二步会出现一些问题没能像网上的方法那么顺利,所以把过程记录一下方便以后安装构建也和大家分享共同进步 第一步:搭建一个本地的http服务 打开终端,按以下顺序直接复制粘贴命令 sudo apt-get
2021-03-06 12:37:03 610
原创 使用清华镜像离线安装python_opencv
前言 最近在训练模型过程中,对于import cv2出现的ModuleNotFoundError: No module named ‘cv2’,很直观就能清楚缺少了opencv的库,本以为很容易就能安装完成,结果碰了一鼻子灰…
2021-02-27 17:30:04 3305 5
原创 从零开始,Squeezenet在Pytorch+Opencv上的实现(一):数据集的制作
项目的初衷:虽然做二分类用SVM就基本能够满足功能需求,但因为Squeezenet网络模型足够小,所以想试一下在嵌入式运行速率和精确度是否能够比拟SVM从而尝试替代 功能实现:制作自定义的车位数据集在Pytorch上进行训练,以onnx文件形式在opencv上进行调用实现车位场景和非车位场景的二分类 1.数据集的制作 首先看一下我拿到的数据集样子以及标签方式: 数据标签:有效车位场景为1,无效车位场景为-1 从上图可以看出,一开始拿到的数据集图片是大小不一的,图片名称虽然是从0开始排起,
2020-07-18 16:29:32 743
原创 Squeezenet官方源代码解析
网络设计思路 使用以下三个策略来减少SqueezeNet设计参数 (1)使用1∗1卷积代替3∗3 卷积:参数减少为原来的1/9 (2)减少输入通道数量:这一部分使用squeeze layers来实现 (3)将欠采样操作延后,可以给卷积层提供更大的激活图:更大的激活图保留了更多的信息,可以提供更高的分类准确率 其中,(1)和(2)可以显著减少参数数量,(3)可以在参数数量受限的情况下提高准确率。 import torch import torch.nn as nn import torch.nn.init a
2020-07-13 20:16:40 855
原创 Squeezenet论文翻译
Squeezenet:精确度达到AlexNet级别,参数少50倍及大小0.5MB的模型 摘要 在深度卷积神经网络的研究主要的关注点是提升其准确度。在给定准确度水平的条件下,通常可以识别多个达到该精度级别的CNN体系架构。在同等精度条件下,较小的CNN架构至少有三个优点: (1) 在分布式训练中小模型在服务器中的通信量更少,分布式训练更加高效,因为在服务器间的通信是分布式CNN训练的可扩展性的限制因素。 (2) 便于模型的更新,在从云端导入到客户端时需求带宽更少 (3) 小模型部署在FPGA硬件上更灵活,因为
2020-07-08 16:27:12 391
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人