提要
这一篇主要是关于Squeezenet源代码的解析注释,经过上一篇论文的了解(主要是第三章)之后,对照作者的思路配合代码能够更加深刻的理解作者设计该网络的精妙之处
Squeezenet论文翻译: link.
网络设计思路
使用以下三个策略来减少SqueezeNet设计参数
(1)使用1∗1卷积代替3∗3 卷积:参数减少为原来的1/9
(2)减少输入通道数量:这一部分使用squeeze layers来实现
(3)将欠采样操作延后,可以给卷积层提供更大的激活图:更大的激活图保留了更多的信息,可以提供更高的分类准确率
其中,(1)和(2)可以显著减少参数数量,(3)可以在参数数量受限的情况下提高准确率。
import torch
import torch.nn as nn
import torch.nn.init as init
from .utils import load_state_dict_from_url
__all__ = ['SqueezeNet', 'squeezenet1_0', 'squeezenet1_1']
model_urls = {
'squeezenet1_0': 'https://download.pytorch.org/models/squeezenet1_0-a815701f.pth',
'squeezenet1_1': 'https://download.pytorch.org/models/squeezenet1_1-f364aa15.pth',
}
# 定义Fire模块的属性
class Fire(nn.Module):
# __init__定义参数属性初始化,接着使用super(Fire, self).__init__()调用基类初始化函数对基类进行初始化
def __init__(self, inplanes, squeeze_planes,
expand1x1_planes, expand3x3_planes):
# inplanes:输入通道 squeeze_planes:输出通道 expand1x1_planes:1x1卷积层 expand3x3_planes:3x3卷积层
super(Fire, self).__init__()
self.inplanes = inplanes
self.squeeze = nn.Conv2d(inplanes, squeeze_planes, kernel_size=1)
self.squeeze_activation = nn.ReLU(inplace=True)
self.expand1x1 = nn.Conv2d(squeeze_planes, expand1x1_planes,
kernel_size=1)
# inplace=True表示可以在原始的输入上直接操作,不会再为输出分配额外内存,但同时会破坏原始的输入
self.expand1x1_activation = nn.ReLU(inplace=True)
# 为了使1x1和3x3的filter输出的结果又相同的尺寸,在expand modules中,给3x3的filter的原始输入添加一个像素的边界(zero-padding).
self.expand3x3 = nn.Conv2d(squeeze_planes, expand3x3_planes,
kernel_size=3, padding=1)
# squeeze 和 expand layers中都是用ReLU作为激活函数
self.expand3x3_activation = nn.ReLU(inplace=True)
def forward(self, x):
# 将输入x经过squeeze layer进行卷机操作,再经过squeez_activation()进行激活
x = self.squeeze_activation(self.squeeze(x))
# 将输出分别送到expand1x1和expand3x3中进行卷积核激活
# 最后使用torch.cat()将两个相同维度的张量连接在一起,这里dim=1,代表按列连接,最终得到若干行
return torch.cat([
self.expand1x1_activation(self.expand1x1(x)),
self.expand3x3_activation(self.expand3x3(x))
], 1)
# version=1.0和version=1.1两个SqueezeNet版本
# version=1.0只有AlexNet的1/50的参数,而1.1在1.0的基础上进一步压缩,计算了降低为1.0的40%左右,主要体现在(1)第一层卷积核7x7更改为3x3 (2)将max_pool层提前了,减少了计算量
class SqueezeNet(nn.Module):
# num_classes:分类的类别个数
def __init__(self, version='1_0', num_classes=1000):
super(SqueezeNet, self).__init__()
self.num_classes = num_classes
if version == '1_0':
# self.features:定义了主要的网络层,nn.Sequential()是PyTorch中的序列容器
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=7, stride=2),
nn.ReLU(inplace=True),
# ceil_mode=True会对池化结果进行向上取整而不是向下取整
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(96, 16, 64, 64),
Fire(128, 16, 64, 64),
Fire(128, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 32, 128, 128),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(512, 64, 256, 256),
)
elif version == '1_1':
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=3, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(64, 16, 64, 64),
Fire(128, 16, 64, 64),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(128, 32, 128, 128),
Fire(256, 32, 128, 128),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
Fire(256, 48, 192, 192),
Fire(384, 48, 192, 192),
Fire(384, 64, 256, 256),
Fire(512, 64, 256, 256),
)
else:
# FIXME: Is this needed? SqueezeNet should only be called from the
# FIXME: squeezenet1_x() functions
# FIXME: This checking is not done for the other models
raise ValueError("Unsupported SqueezeNet version {version}:"
"1_0 or 1_1 expected".format(version=version))
# Final convolution is initialized differently from the rest
final_conv = nn.Conv2d(512, self.num_classes, kernel_size=1)
self.classifier = nn.Sequential(
# 在fire9 module之后,使用Dropout,比例取50%
nn.Dropout(p=0.5),
final_conv,
nn.ReLU(inplace=True),
# 使用卷积层代替全连接层
# 即先采用AdaptiveAvgPool2D,将size变为1x1,channel数=num_classes,再做resize
nn.AdaptiveAvgPool2d((1, 1))
)
for m in self.modules():
if isinstance(m, nn.Conv2d):
# 遍历看是否为最后一层,卷积层的初始化方法不同
if m is final_conv:
# 均值为0,方差为0.01的正太分布初始化方法
init.normal_(m.weight, mean=0.0, std=0.01)
else:
# 使用He Kaiming中的均匀分布初始化方法
init.kaiming_uniform_(m.weight)
if m.bias is not None:
init.constant_(m.bias, 0)
# 偏置初始化为0
def forward(self, x):
x = self.features(x)
x = self.classifier(x)
# 返回一个折叠成一维的数组
return torch.flatten(x, 1)
def _squeezenet(version, pretrained, progress, **kwargs):
model = SqueezeNet(version, **kwargs)
if pretrained:
arch = 'squeezenet' + version
state_dict = load_state_dict_from_url(model_urls[arch],
progress=progress)
model.load_state_dict(state_dict)
return model
def squeezenet1_0(pretrained=False, progress=True, **kwargs):
r"""SqueezeNet model architecture from the `"SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and <0.5MB model size"
<https://arxiv.org/abs/1602.07360>`_ paper.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _squeezenet('1_0', pretrained, progress, **kwargs)
def squeezenet1_1(pretrained=False, progress=True, **kwargs):
r"""SqueezeNet 1.1 model from the `official SqueezeNet repo
<https://github.com/DeepScale/SqueezeNet/tree/master/SqueezeNet_v1.1>`_.
SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters
than SqueezeNet 1.0, without sacrificing accuracy.
Args:
pretrained (bool): If True, returns a model pre-trained on ImageNet
progress (bool): If True, displays a progress bar of the download to stderr
"""
return _squeezenet('1_1', pretrained, progress, **kwargs)
以上注释如有错误或者更好的解析可以提出一起交流进步 0_0