指数分布,卡方分布和伽马分布

本文介绍了伽马分布、指数分布和卡方分布,揭示了指数分布是伽马分布α=1,β=λ1的特殊情况,而卡方分布则是伽马分布α=2n,β=2的特殊情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

指数分布和卡方分布都是伽马分布的一种特殊情况。

伽马分布

伽马分布一般用符号: X ∼ Γ ( α , β ) X\sim \Gamma(\alpha,\beta) XΓ(α,β),概率密度函数如下所示。
f ( x ) = { 1 β α Γ ( α ) x α − 1 e − x β , x > 0 0 , x ≤ 0 \begin{aligned} f(x)= \left\{ \begin{aligned} &\frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-\frac{x}{\beta}},x>0 \\ &0,x\leq 0 \end{aligned} \right. \end{aligned} f(x)=βαΓ(α)1xα1eβx,x>00,x0

指数分布

指数分布一般用符号: X ∼ E x p ( λ ) X\sim \mathrm{Exp}(\lambda) XExp(λ),概率密度函数如下所示。
f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 \begin{aligned} f(x)= \left\{ \begin{aligned} &\lambda e^{-\lambda x},x>0 \\ &0,x\leq 0 \end{aligned} \right. \end{aligned} f(x)={λeλx,x>00,x0
你发现了什么没有?指数分布是伽马分布的一种特殊情况, X ∼ E x p ( λ ) = Γ ( 1 , 1 λ ) X\sim \mathrm{Exp}(\lambda)=\Gamma (1,\frac{1}{\lambda}) XExp(λ)=Γ(1,λ1)。当伽马分布的参数 α = 1 \alpha =1 α=1且参数 β = 1 λ \beta =\frac{1}{\lambda} β=λ1的时候,伽马分布变为了指数分布。

卡方分布

卡方分布一般用符号: X ∼ X 2 ( n ) X\sim \mathcal{X}^2(n) XX2(n),概率密度函数如下所示。
f ( x ) = { 1 2 n 2 Γ ( n 2 ) x n 2 − 1 e − x 2 , x > 0 0 , x ≤ 0 \begin{aligned} f(x)= \left\{ \begin{aligned} &\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-\frac{x}{2}},x>0 \\ &0,x\leq 0 \end{aligned} \right. \end{aligned} f(x)=22nΓ(2n)1x2n1e2x,x>00,x0
发现了没有,卡方分布是伽马分布的一种特殊情况。 X ∼ X 2 ( n ) = Γ ( n 2 , 2 ) X\sim \mathcal{X}^2(n)=\Gamma(\frac{n}{2},2) XX2(n)=Γ(2n,2)。当伽马分布的参数 α = n 2 \alpha =\frac{n}{2} α=2n且参数 β = 2 \beta =2 β=2的时候,伽马分布变为了卡方分布。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值