指数分布和卡方分布都是伽马分布的一种特殊情况。
伽马分布
伽马分布一般用符号:
X
∼
Γ
(
α
,
β
)
X\sim \Gamma(\alpha,\beta)
X∼Γ(α,β),概率密度函数如下所示。
f
(
x
)
=
{
1
β
α
Γ
(
α
)
x
α
−
1
e
−
x
β
,
x
>
0
0
,
x
≤
0
\begin{aligned} f(x)= \left\{ \begin{aligned} &\frac{1}{\beta^{\alpha}\Gamma(\alpha)}x^{\alpha-1}e^{-\frac{x}{\beta}},x>0 \\ &0,x\leq 0 \end{aligned} \right. \end{aligned}
f(x)=⎩⎪⎨⎪⎧βαΓ(α)1xα−1e−βx,x>00,x≤0
指数分布
指数分布一般用符号:
X
∼
E
x
p
(
λ
)
X\sim \mathrm{Exp}(\lambda)
X∼Exp(λ),概率密度函数如下所示。
f
(
x
)
=
{
λ
e
−
λ
x
,
x
>
0
0
,
x
≤
0
\begin{aligned} f(x)= \left\{ \begin{aligned} &\lambda e^{-\lambda x},x>0 \\ &0,x\leq 0 \end{aligned} \right. \end{aligned}
f(x)={λe−λx,x>00,x≤0
你发现了什么没有?指数分布是伽马分布的一种特殊情况,
X
∼
E
x
p
(
λ
)
=
Γ
(
1
,
1
λ
)
X\sim \mathrm{Exp}(\lambda)=\Gamma (1,\frac{1}{\lambda})
X∼Exp(λ)=Γ(1,λ1)。当伽马分布的参数
α
=
1
\alpha =1
α=1且参数
β
=
1
λ
\beta =\frac{1}{\lambda}
β=λ1的时候,伽马分布变为了指数分布。
卡方分布
卡方分布一般用符号:
X
∼
X
2
(
n
)
X\sim \mathcal{X}^2(n)
X∼X2(n),概率密度函数如下所示。
f
(
x
)
=
{
1
2
n
2
Γ
(
n
2
)
x
n
2
−
1
e
−
x
2
,
x
>
0
0
,
x
≤
0
\begin{aligned} f(x)= \left\{ \begin{aligned} &\frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}x^{\frac{n}{2}-1}e^{-\frac{x}{2}},x>0 \\ &0,x\leq 0 \end{aligned} \right. \end{aligned}
f(x)=⎩⎪⎨⎪⎧22nΓ(2n)1x2n−1e−2x,x>00,x≤0
发现了没有,卡方分布是伽马分布的一种特殊情况。
X
∼
X
2
(
n
)
=
Γ
(
n
2
,
2
)
X\sim \mathcal{X}^2(n)=\Gamma(\frac{n}{2},2)
X∼X2(n)=Γ(2n,2)。当伽马分布的参数
α
=
n
2
\alpha =\frac{n}{2}
α=2n且参数
β
=
2
\beta =2
β=2的时候,伽马分布变为了卡方分布。