伽马分布,指数分布,卡方分布三者关系

文章介绍了伽马分布、指数分布和卡方分布的概念及其相互关系。伽马分布有两个参数α和λ,指数分布是伽马分布的特殊情形(α=1)。卡方分布是k个独立标准正态分布平方和的分布,与自由度为k的伽马分布(α=k/2,λ=1/2)相关联。通过这种联系,卡方分布可视为多个指数分布的和。
摘要由CSDN通过智能技术生成

1.伽马分布是一个连续概率分布,具有两个参数 α \alpha α λ \lambda λ,记为 Gamma ( α , λ ) \text{Gamma}(\alpha,\lambda) Gamma(α,λ)。伽马分布的概率密度函数为:

f ( x ; α , λ ) = λ α x α − 1 e − λ x Γ ( α ) , x > 0 , α > 0 , λ > 0 , f(x;\alpha,\lambda)=\frac{\lambda^{\alpha}x^{\alpha-1}e^{-\lambda x}}{\Gamma(\alpha)},\quad x>0,\alpha>0,\lambda>0, f(x;α,λ)=Γ(α)λαxα1eλx,x>0,α>0,λ>0,

其中 Γ ( α ) \Gamma(\alpha) Γ(α) 是欧拉伽马函数, α \alpha α λ \lambda λ 是分布的参数。

2.指数分布是伽马分布的一种特殊情况,当 α = 1 \alpha=1 α=1 时,伽马分布就变成了指数分布。指数分布的概率密度函数为:

f ( x ; λ ) = λ e − λ x , x > 0 , λ > 0 , f(x;\lambda)=\lambda e^{-\lambda x},\quad x>0,\lambda>0, f(x;λ)=λeλx,x>0,λ>0,

其中 λ \lambda λ 是分布的参数。

3.卡方分布是指 k k k 个独立标准正态分布的平方和服从的分布,记为 χ 2 ( k ) \chi^2(k) χ2(k)。具体来说,若 Z 1 , … , Z k Z_1,\ldots,Z_k Z1,,Zk k k k 个独立的标准正态分布,则其平方和

χ 2 = k ∑ i = 1 k Z i 2 \chi^2=k\sum_{i=1}^{k}Z_i^2 χ2=ki=1kZi2

服从自由度为 k k k 的卡方分布。

卡方分布是伽马分布的一种特殊情况,当 α = k 2 \alpha=\frac{k}{2} α=2k λ = 1 2 \lambda=\frac{1}{2} λ=21 时,伽马分布就变成了卡方分布。卡方分布可以表示为多个独立的标准正态分布的平方和,而标准正态分布的平方可以表示为一个参数为 1 / 2 1/2 1/2 的指数分布。因此,卡方分布可以看作是多个独立指数分布的和,而指数分布又是伽马分布的特殊情况。这就是三者之间的关系。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值