1.伽马分布是一个连续概率分布,具有两个参数 α \alpha α 和 λ \lambda λ,记为 Gamma ( α , λ ) \text{Gamma}(\alpha,\lambda) Gamma(α,λ)。伽马分布的概率密度函数为:
f ( x ; α , λ ) = λ α x α − 1 e − λ x Γ ( α ) , x > 0 , α > 0 , λ > 0 , f(x;\alpha,\lambda)=\frac{\lambda^{\alpha}x^{\alpha-1}e^{-\lambda x}}{\Gamma(\alpha)},\quad x>0,\alpha>0,\lambda>0, f(x;α,λ)=Γ(α)λαxα−1e−λx,x>0,α>0,λ>0,
其中 Γ ( α ) \Gamma(\alpha) Γ(α) 是欧拉伽马函数, α \alpha α 和 λ \lambda λ 是分布的参数。
2.指数分布是伽马分布的一种特殊情况,当 α = 1 \alpha=1 α=1 时,伽马分布就变成了指数分布。指数分布的概率密度函数为:
f ( x ; λ ) = λ e − λ x , x > 0 , λ > 0 , f(x;\lambda)=\lambda e^{-\lambda x},\quad x>0,\lambda>0, f(x;λ)=λe−λx,x>0,λ>0,
其中 λ \lambda λ 是分布的参数。
3.卡方分布是指 k k k 个独立标准正态分布的平方和服从的分布,记为 χ 2 ( k ) \chi^2(k) χ2(k)。具体来说,若 Z 1 , … , Z k Z_1,\ldots,Z_k Z1,…,Zk 是 k k k 个独立的标准正态分布,则其平方和
χ 2 = k ∑ i = 1 k Z i 2 \chi^2=k\sum_{i=1}^{k}Z_i^2 χ2=ki=1∑kZi2
服从自由度为 k k k 的卡方分布。
卡方分布是伽马分布的一种特殊情况,当 α = k 2 \alpha=\frac{k}{2} α=2k, λ = 1 2 \lambda=\frac{1}{2} λ=21 时,伽马分布就变成了卡方分布。卡方分布可以表示为多个独立的标准正态分布的平方和,而标准正态分布的平方可以表示为一个参数为 1 / 2 1/2 1/2 的指数分布。因此,卡方分布可以看作是多个独立指数分布的和,而指数分布又是伽马分布的特殊情况。这就是三者之间的关系。