二分查找,不犯错真难
二分查找是一种经典的算法,用来查找数组中的元素的索引。
二分查找的思想比较简单朴素,但是很多人会容易在边界条件上犯错,因为常用的二分查找涉及到自己在一开始是把右边界赋值为数组的长度还是数组的长度减去一,这两种情况是代码中的边界是不一样的,比如写不写等号,很多人经常搞错。
情况一:右边界为nums.size() - 1
这种情况,存在左边界等于右边界的情况,即left=right。这时候我们能取到right边界,这意味着此时的区间是闭区间,即[left, right]。
有两点需要注意,第一,while循环中有等号,即while(left <= right),因为等号是有意义的。第二,在判断if(nums[mid] > target)的时候,此时right赋值为mid-1。因为mid的索引值一定不是target,因此接下来查找的左区间的结束地方的索引是mid-1。
C++ 代码
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size() - 1;
while (left <= right) {
int mid = left + ((right - left) / 2);
if (nums[mid] > target) {
right = mid - 1;
} else if (nums[mid] < target) {
left = mid + 1;
} else {
return mid;
}
}
return -1;
}
}
情况二:右边界为nums.size()
这种情况,是左闭右开区间,即[left, right)。
也有两点需要注意,第一,while循环中没有等号。第二,在判断if(nums[mid] > target)的时候,此时的right赋值为mid。
C++代码
class Solution {
public:
int search(vector<int>& nums, int target) {
int left = 0;
int right = nums.size();
while (left < right) {
int mid = left + ((right - left) >> 1);
if (nums[mid] > target) {
right = mid;
} else if (nums[mid] < target) {
left = mid + 1;
} else {
return mid;
}
}
return -1;
}
}