1. 题目描述
描述:HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。
给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
2. 题目解析
2.1 考察问题
此问题考察数组遍历,找求和规律。
最简单办法,两层遍历,枚举所有可能情况,比较得到最大和。时间复杂度
O
(
n
2
)
O(n^2)
O(n2),空间复杂度
O
(
1
)
O(1)
O(1)
进一步优化,问题中有一个特点:数组一定是有正有负的。说明最大和一定大于0,利用这个特点,后边通过遍历一次求的max。
如果没有有正有负的特点,那么动态规划,是解决该问题的终极最简办法。
2.2 解决办法
- 三重遍历,枚举比较
此方法想法简单,外层遍历子数组长度;中层遍历所有该长度的子数组和,比较得到最大值;最内层遍历求该长度连续子数组和。
时间复杂度 O ( n 3 ) O(n^3) O(n3),空间复杂度 O ( 1 ) O(1) O(1)
到这里,时间复杂度太高 - 找规律一次遍历
由于数组中元素有正有负,则取一个变量记录当前子数组的和curSum,每次考察curSum,当大于零则直接加下一个元素array[i],小于等于0则更新curSum=array[i],每次比较更新最大值max。
时间复杂度为 O ( n ) O(n) O(n),空间复杂度为 O ( 1 ) O(1) O(1) - 动态规划
动态规划光用脑子想不大好明白,可以用笔画一画。
数组元素为n个,则将问题划分为n个步骤。每一步都考察加上array[i]的连续数组和(类似curSum)与 array[i]的大小比较,更新连续子数组和,然后更新全局的最大值。
以数组[6, -3, -2, 7, -15, 1, 2, 2]为例:
初始状态(i = 0):
F(0)=6
res=6
i=1:
F(1)=max(F(0)-3,-3)=max(6-3,3)=3
res=max(F(1),res)=max(3,6)=6
i=2:
F(2)=max(F(1)-2,-2)=max(3-2,-2)=1
res=max(F(2),res)=max(1,6)=6
i=3:
F(3)=max(F(2)+7,7)=max(1+7,7)=8
res=max(F(2),res)=max(8,6)=8
i=4:
F(4)=max(F(3)-15,-15)=max(8-15,-15)=-7
res=max(F(4),res)=max(-7,8)=8
3. 代码实现
3.1 三重遍历
class Solution:
def FindGreatestSumOfSubArray(self, array):
# write code here
maxSum = -9999
for i in range(1, len(array) + 1):
# for j in range(0, len(array)):
maxSum = max(maxSum, max([sum(array[j:j+i]) for j in range(0, len(array))])) ### 看起来貌似两重遍历,其实是三重遍历
return maxSum
3.2 找规律一次遍历
class Solution:
def FindGreatestSumOfSubArray(self, array):
# write code here
curSum = 0
maxSum = -99999 ### 取一个足够小的值即可
for num in array:
if curSum <= 0:### 真正用代码实现的时候,我发现这行代码其实等价于 curSum + num <= num,和动态规划一个意思。
curSum = num
else:
curSum = curSum + num
if curSum > maxSum:
maxSum = curSum
return maxSum
3.3 动态规划
class Solution:
def FindGreatestSumOfSubArray(self, array):
curSum = array[0]
maxSum = array[0]
for i in range(1, len(array)):
curSum = max(curSum+array[i], array[i])
maxSum = max(curSum, maxSum)
return maxSum
4. 心得
所有涉及到n个步骤考察的问题,可以考虑贪心算法,动态规划或者干脆回溯算法枚举所有可能情况。
这个问题是动态规划的典型问题,可能方法2并不容易想到,但是当写完动态规划的时候,回头看方法2就一目了然了。
可以继续看一下 最大子矩阵和,https://www.nowcoder.com/questionTerminal/a5a0b05f0505406ca837a3a76a5419b3