45 连续子数组的最大和--剑指offer--python实现

本文探讨了一维模式识别中的经典问题——计算连续子向量的最大和,尤其是在数组包含正负数时的解决方案。介绍了三种解决策略:三重遍历、找规律一次遍历和动态规划,对比了它们的时间复杂度与空间复杂度,最终推荐使用动态规划作为最优解。
摘要由CSDN通过智能技术生成

1. 题目描述

  描述:HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。
  给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)

2. 题目解析

2.1 考察问题

  此问题考察数组遍历,找求和规律。
  最简单办法,两层遍历,枚举所有可能情况,比较得到最大和。时间复杂度 O ( n 2 ) O(n^2) O(n2),空间复杂度 O ( 1 ) O(1) O(1)
  进一步优化,问题中有一个特点:数组一定是有正有负的。说明最大和一定大于0,利用这个特点,后边通过遍历一次求的max。
  如果没有有正有负的特点,那么动态规划,是解决该问题的终极最简办法。

2.2 解决办法

  1. 三重遍历,枚举比较
      此方法想法简单,外层遍历子数组长度;中层遍历所有该长度的子数组和,比较得到最大值;最内层遍历求该长度连续子数组和。
    时间复杂度 O ( n 3 ) O(n^3) O(n3),空间复杂度 O ( 1 ) O(1) O(1)
      到这里,时间复杂度太高
  2. 找规律一次遍历
      由于数组中元素有正有负,则取一个变量记录当前子数组的和curSum,每次考察curSum,当大于零则直接加下一个元素array[i],小于等于0则更新curSum=array[i],每次比较更新最大值max。
      时间复杂度为 O ( n ) O(n) O(n),空间复杂度为 O ( 1 ) O(1) O(1)
  3. 动态规划
       动态规划光用脑子想不大好明白,可以用笔画一画。
       数组元素为n个,则将问题划分为n个步骤。每一步都考察加上array[i]的连续数组和(类似curSum)与 array[i]的大小比较,更新连续子数组和,然后更新全局的最大值。
      以数组[6, -3, -2, 7, -15, 1, 2, 2]为例:

初始状态(i = 0):

F(0)=6
res=6

i=1:

F(1)=max(F(0)-3,-3)=max(6-3,3)=3
res=max(F(1),res)=max(3,6)=6

i=2:

F(2)=max(F(1)-2,-2)=max(3-2,-2)=1
res=max(F(2),res)=max(1,6)=6

i=3:

F(3)=max(F(2)+7,7)=max(1+7,7)=8
res=max(F(2),res)=max(8,6)=8

i=4:

F(4)=max(F(3)-15,-15)=max(8-15,-15)=-7
res=max(F(4),res)=max(-7,8)=8

3. 代码实现

3.1 三重遍历

class Solution:
    def FindGreatestSumOfSubArray(self, array):
        # write code here
        maxSum = -9999
        for i in range(1, len(array) + 1):
            # for j in range(0, len(array)):
            maxSum = max(maxSum, max([sum(array[j:j+i]) for j in range(0, len(array))])) ### 看起来貌似两重遍历,其实是三重遍历
        return maxSum

3.2 找规律一次遍历

class Solution:
    def FindGreatestSumOfSubArray(self, array):
        # write code here
        curSum = 0
        maxSum = -99999 ### 取一个足够小的值即可
        for num in array:
            if curSum <= 0:### 真正用代码实现的时候,我发现这行代码其实等价于 curSum + num <= num,和动态规划一个意思。
                curSum = num
            else:
                curSum = curSum + num          
            if curSum > maxSum:
                maxSum = curSum
        return maxSum

3.3 动态规划

class Solution:
    def FindGreatestSumOfSubArray(self, array):
        curSum = array[0]
        maxSum = array[0]
        for i in range(1, len(array)):
            curSum = max(curSum+array[i], array[i])
            maxSum = max(curSum, maxSum)
        return maxSum

4. 心得

   所有涉及到n个步骤考察的问题,可以考虑贪心算法,动态规划或者干脆回溯算法枚举所有可能情况。
   这个问题是动态规划的典型问题,可能方法2并不容易想到,但是当写完动态规划的时候,回头看方法2就一目了然了。
   可以继续看一下 最大子矩阵和,https://www.nowcoder.com/questionTerminal/a5a0b05f0505406ca837a3a76a5419b3

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值