文章目录
0. 模型评估是什么,为什么
模型评估其本质是为了解决模型的泛化问题,由于各种原因,训练完成的模型可能会产生过拟合和欠拟合问题,因此需要对模型评估其泛化能力,并进行合适的参数调整以求得模型最优。
为什么要进行模型评估?
除了考虑到模型泛化能力的问题,同时也要兼顾不同业务场景下的业务指标不同。对于不同的业务场景,选择对应的评估指标,可以更加明确优化目标,从而使得模型达到一种实用业务场景的优化。
总而言之,模型评估是为了模型调参服务,使得模型能够更好的用于实际的业务场景下。
1. 不同类型问题的评估指标
如下图是所列不同问题类型的可能评估指标,我们将逐个介绍:
1.1 回归问题
回归问题,在小蓝书P4的定义:输入和输出都是连续变量的预测问题。
评估连续变量预测性能,有三种指标:
- MSE 均方误差
M S E = 1 m ∑ i = 1 m ( y i − y ^ i ) 2 MSE = \frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-\hat{y}_{i}\right)^{2} MSE=m1i=1∑m(yi−y^i)2
这个指标就是线性回归的最小二乘法损失函数,将其作为模型的预测性能评估指标,也是简单直观的。 - RMSE 均方根误差
R M S E = 1 m ∑ i = 1 m ( y i − y ^ i ) 2 RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-\hat{y}_{i}\right)^{2}} RMSE=m1i=1∑m(yi−y^i)2