PAT甲级1150 Travelling Salesman Problem (25 分)(货郎担背景)
- 题意:给出货郎担问题的背景,现在有一个地图,再给出很多路径,判断每一条路径的属性。
有三种情况:1.不连通,2.连通但又重复3.满足货郎担解法,联通且不重复。最后输出2,3中离最优解最接近的解。 - 思路://这里分类的逻辑麻烦,弄了近一个小时了一道题,
//其实这道题重点突破在vis[p1]],就是其实结点要拜访两次,其拜访次数因此减去1就好做了。
//若不连通,则没有拜访到每个城市(两种情况)①路径短②路径有误不可达
//计算路径的总长度,不可达,则直接flag=0,用循环遍历每个节点,vis为0则flag=0;
//不连通完全判断完成后,判断连通时是否有重复,那么就遍历每个结点的vis,若有>1 的情况flag=1,break;
//接下去存储连通时的最短路径并在最后输出即可。
#include<bits/stdc++.h>
using namespace std;
int G[510][510],vis[510],p[510];
const int inf=0x3fffffff;
int main()
{
int n,m;
int bestnum,mindis=inf;
scanf("%d%d",&n,&m);
fill(G[0],G[0]+510*510,inf);
for(int i=0;i<m;i++)
{
int a,b,dis;
scanf("%d%d%d",&a,&b,&dis);
G[a][b]=G[b][a]=dis;
}
int q;
cin>>q;
for(int i=1;i<=q;i++)
{
int liantong=2;
memset(vis,0,sizeof(vis));
int path,ans=0;
scanf("%d",&path);
for(int j=1;j<=path;j++)
{
scanf("%d",&p[j]);
vis[p[j]]++;
}
vis[p[1]]-=1;
for(int j=1;j<path;j++)
{
if(G[p[j]][p[j+1]]==inf)
{
liantong=0;
ans=inf;
break;
}
ans+=G[p[j]][p[j+1]];
}
for(int j=1;j<=n;j++)
{
if(vis[j]==0)
{
liantong=0;
break;
}
}
for(int j=1;j<=n;j++)
{
if(vis[j]>1&&liantong==2)
{
liantong=1;
break;
}
}
printf("Path %d: ",i);
if(liantong==0)
{
if(ans==inf)
printf("NA (Not a TS cycle)\n");
else
printf("%d (Not a TS cycle)\n",ans);
}
else if(liantong==1)
{
printf("%d (TS cycle)\n",ans);
}
else if(liantong==2)
{
printf("%d (TS simple cycle)\n",ans);
}
if(liantong>=1&&ans<mindis)
{
mindis=ans;
bestnum=i;
}
}
printf("Shortest Dist(%d) = %d\n",bestnum,mindis);
return 0;
}