刷题笔记35——求解汉诺塔、字符串子序列问题

本文探讨了汉诺塔问题的解决思路,通过递归将所有盘子从A杆移动到C杆,分析了其复杂度为O(2^n)。此外,还介绍了字符串子序列的概念,指出子序列不强求连续性。
摘要由CSDN通过智能技术生成

一、汉诺塔题目描述

相传在古印度圣庙中,有一种被称为汉诺塔(Hanoi)的游戏。该游戏是在一块铜板装置上,有三根杆(编号A、B、C),在A杆自下而上、由大到小按顺序放置64个金盘(如下图)。游戏的目标:把A杆上的金盘全部移到C杆上,并仍保持原有顺序叠好。操作规则:每次只能移动一个盘子,并且在移动过程中三根杆上都始终保持大盘在下,小盘在上,操作过程中盘子可以置于A、B、C任一杆上。
在这里插入图片描述

1.1 思路

思路简化,因为我们要把所有的饼从A移到C上(Move all from A to C)

  1. 把A针中的N-1个饼放到针B上,此时help是C针(从A中来,到B中去,借助C)
  2. 把A针的最后一个(名字叫做N)饼放到目标针C上
  3. 把B针的N-1个饼放到C针上,此时help是A针(从B中来,到C中去,借助A)

在这里插入图片描述

1.2 复杂度分析

T(n) = T(n - 1)+ 1 + T(n - 1)= 2 T(n - 1) + 1,构造等比数列
要打印2n - 1次,于是复杂度是O(2n

1.3 测试代码及结果

在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值