深度学习--------------------------------使用注意力机制的seq2seq

动机

动机:在机器翻译中,每个生成的词可能源自与句子中间的不同的词。

在这里插入图片描述

源句子:“hello world .”

其中hello比较重要,所以去翻译这个词的时候应该找到与它相似的(也就是bonjour应该把关注点放在这个词上面,而不需要去看很多其它的东西。

在这里插入图片描述
例如:假设翻译的是“monde”,那么对应的是“world”这个词



所以说比较长的句子的时候,就是把所有东西压到一起,因为压到一起可能看不出来到底哪一块是前面、哪一块是后面所以在翻译句子哪个部位的时候去看对应部位的原句子。

但是seq2seq做不了这个事情,因为seq2seq传过去的东西是最后那个词隐藏状态,seq2seq只用了最后这个词输出的东西,根据这个东西去往下找,

在这里插入图片描述
所以它看不到前面那些词的输入当然,前面那些词(hello word)已经在这个里面了,假设已经存了很多问题了,那么需要从这里还原出你的未知的信息

所以这里的动机是说:我想要去翻译对应的词的时候,去让我的注意力关注原句子中对应的部分




加入注意力

Bahdanau注意力的架构

在这里插入图片描述

在做解码器的RNN的输入的时候,一块来自Embedding、另外一块来自前面编码器的RNN的最后一个时刻的最后一层的输出作为上下文一块传进去的。
在这里插入图片描述
现在说用最后一个时刻作为上下文,即:作为那个context传进去不好。应该根据当前预测任务去动态的选择,而不是只能是最后时刻的隐藏状态作为输入,可能是前面几个时刻对应的那些隐藏状态作为输入。

例如:
    在翻译第一个的时候(hello),我不应该去把那个RNN最后那个时刻(即:那个句号)对应的state传到解码器的RNN,而是把第一个时刻的隐藏状态传到解码器的RNN。

在这里插入图片描述


①编码器对应每个词的输出作为key和value放进Attention里面。
在这里插入图片描述

②解码器RNN对上一个词的预测输出是query
在这里插入图片描述

③注意力的输出和下一个词的词嵌入合并进入RNN。

在这里插入图片描述


对比seq2seq的改进:

seq2seq永远是上一个RNN里面的最后那一个词的输出,现在是把所有的词拿出来对它做一个weight(做一个加权的平均),然后根据不同的词,比如一开始用前面的那些输出,到后面就用后面那些词的输出。




总结

①Seq2seq中通过隐状态在编码器和解码器中传递信息。

②注意力机制可以根据解码器RNN的输出来匹配到合适的编码器RNN的输出来更有效的传递信息。




Bahdanau注意力代码

import torch
from torch import nn
from d2l import torch as d2l
import os



带有注意力机制的解码器基本接口

# 带有注意力机制的解码器基本接口
class AttentionDecoder(d2l.Decoder):
    """带有注意力机制的解码器基本接口"""
    def __init__(self, **kwargs):
        super(AttentionDecoder, self).__init__(**kwargs)
        
    @property
    def attention_weight(self):
        raise NotImplementedError



实现带有Bahdanau注意力的循环神经网络解码器

# 实现带有Bahdanau注意力的循环神经网络解码器
class Seq2SeqAttentionDecoder(AttentionDecoder):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs):
        # 调用父类AttentionDecoder的构造函数进行初始化
        super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)
        # 创建一个加性注意力机制的实例,用于计算注意力权重
        # 这里的key、value、query长度都是num_hiddens,所以可以用点乘的attention(Scaled Dot-Product Attention)
        # 这里用加性的是因为这里可以学参数,效果会好一点
        self.attention = d2l.AdditiveAttention(num_hiddens, num_hiddens, num_hiddens, dropout)
        # 这三行和seq2seq一样的
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers, dropout=dropout)
        self.dense = nn.Linear(num_hiddens, vocab_size)

    # 这里相比之前多了enc_valid_lens,需要告诉哪些是填充的
    def init_state(self, enc_outputs, enc_valid_lens, *args):
        outputs, hidden_state = enc_outputs
        # 对outputs进行维度变换,将batch维和时间步维交换,保持与解码器输入的一致性
        # 返回初始化的解码器隐藏状态
        return (outputs.permute(1, 0, 2), hidden_state, enc_valid_lens)

    def forward(self, X, state):
        enc_outputs, hidden_state, enc_valid_lens = state
        # 对输入序列进行嵌入表示,并进行维度变换,将batch维和时间步维交换
        X = self.embedding(X).permute(1, 0, 2)
        outputs, self._attention_weights = [], []
        # 每一步的context会变,所以对于decode的输入的每一个x
        for x in X:
            # hidden_state[-1]是取上一个时间的RNN的输出(最后一层的输出)
            # 获取当前时间步的查询向量,将隐藏状态的最后一个时间步的特征进行维度扩展
            # 加一个number of query这个维度进去,虽然这个query只有一个
            query = torch.unsqueeze(hidden_state[-1], dim=1)
            # ⭐计算注意力上下文向量,通过注意力机制对编码器的输出进行加权求和
            # query就是上一个时刻的最后一层的输出
            # key就是enc_outputs(形状:[批量大小、时间步、num_hiddens]),value就是enc_outputs
            # enc_valid_lens是一个长为bath_size的一个向量,其中第i个元素表示第i个样本的原始长度是几,因为不算填充
            context = self.attention(query, enc_outputs, enc_outputs, enc_valid_lens)
            # 将注意力上下文向量与当前时间步的输入进行拼接,用于输入到循环神经网络
            # 因为context里面多了一个长为1的维度(就是那个key的维度),所以x也加了一个维度,然后在最后一个维度concat起来
            x = torch.cat((context, torch.unsqueeze(x, dim=1)), dim=-1)
            # 执行循环神经网络的前向计算,得到输出和更新后的隐藏状态
            out, hidden_state = self.rnn(x.permute(1, 0, 2), hidden_state)
            # 将输出和注意力权重添加到对应的列表中
            outputs.append(out)
            self._attention_weights.append(self.attention.attention_weights)
        # 将输出列表中的结果进行拼接,并通过线性层进行映射
        outputs = self.dense(torch.cat(outputs, dim=0))
        # 对输出进行维度变换,将batch维和时间步维交换,并返回更新后的状态信息
        return outputs.permute(1, 0, 2), [enc_outputs, hidden_state, enc_valid_lens]

    @property
    def attention_weights(self):
        # 返回注意力权重
        return self._attention_weights




测试Bahdanau注意力解码器

# 创建编码器和解码器的实例
encoder = d2l.Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
encoder.eval()
decoder = Seq2SeqAttentionDecoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
decoder.eval()
# 创建输入序列X
X = torch.zeros((4, 7), dtype=torch.long)
# 初始化解码器的状态
state = decoder.init_state(encoder(X), None)
# 执行解码器的前向计算
output, state = decoder(X, state)
# 输出结果的形状以及状态信息的长度和形状
print(output.shape)
print(len(state))
print(state[0].shape)
print(len(state[1]))
print(state[1][0].shape)



该部分总代码

import torch
from torch import nn
from d2l import torch as d2l
import os


# 带有注意力机制的解码器基本接口
class AttentionDecoder(d2l.Decoder):
    """带有注意力机制的解码器基本接口"""

    def __init__(self, **kwargs):
        super(AttentionDecoder, self).__init__(**kwargs)

    @property
    def attention_weight(self):
        raise NotImplementedError


# 实现带有Bahdanau注意力的循环神经网络解码器
class Seq2SeqAttentionDecoder(AttentionDecoder):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs):
        # 调用父类AttentionDecoder的构造函数进行初始化
        super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)
        # 创建一个加性注意力机制的实例,用于计算注意力权重
        # 这里的key、value、query长度都是num_hiddens,所以可以用点乘的attention(Scaled Dot-Product Attention)
        # 这里用加性的是因为这里可以学参数,效果会好一点
        self.attention = d2l.AdditiveAttention(num_hiddens, num_hiddens, num_hiddens, dropout)
        # 这三行和seq2seq一样的
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers, dropout=dropout)
        self.dense = nn.Linear(num_hiddens, vocab_size)

    # 这里相比之前多了enc_valid_lens,需要告诉哪些是填充的
    def init_state(self, enc_outputs, enc_valid_lens, *args):
        outputs, hidden_state = enc_outputs
        # 对outputs进行维度变换,将batch维和时间步维交换,保持与解码器输入的一致性
        # 返回初始化的解码器隐藏状态
        return (outputs.permute(1, 0, 2), hidden_state, enc_valid_lens)

    def forward(self, X, state):
        enc_outputs, hidden_state, enc_valid_lens = state
        # 对输入序列进行嵌入表示,并进行维度变换,将batch维和时间步维交换
        X = self.embedding(X).permute(1, 0, 2)
        outputs, self._attention_weights = [], []
        # 每一步的context会变,所以对于decode的输入的每一个x
        for x in X:
            # hidden_state[-1]是取上一个时间的RNN的输出(最后一层的输出)
            # 获取当前时间步的查询向量,将隐藏状态的最后一个时间步的特征进行维度扩展
            # 加一个number of query这个维度进去,虽然这个query只有一个
            # 这里的query形状是[4, 1, 16]
            query = torch.unsqueeze(hidden_state[-1], dim=1)
            # ⭐计算注意力上下文向量,通过注意力机制对编码器的输出进行加权求和
            # query就是上一个时刻的最后一层的输出
            # key就是enc_outputs(形状:[批量大小、时间步、num_hiddens]),value就是enc_outputs
            # enc_valid_lens是一个长为bath_size的一个向量,其中第i个元素表示第i个样本的原始长度是几,因为不算填充
            # 这里的context形状是[4, 1, 16]
            context = self.attention(query, enc_outputs, enc_outputs, enc_valid_lens)
            # 将注意力上下文向量与当前时间步的输入进行拼接,用于输入到循环神经网络
            # 因为context里面多了一个长为1的维度(就是那个key的维度),所以x也加了一个维度,然后在最后一个维度concat起来
            x = torch.cat((context, torch.unsqueeze(x, dim=1)), dim=-1)
            # 执行循环神经网络的前向计算,得到输出和更新后的隐藏状态
            out, hidden_state = self.rnn(x.permute(1, 0, 2), hidden_state)
            # 将输出和注意力权重添加到对应的列表中
            outputs.append(out)
            self._attention_weights.append(self.attention.attention_weights)
        # 将输出列表中的结果进行拼接,并通过线性层进行映射
        outputs = self.dense(torch.cat(outputs, dim=0))
        # 对输出进行维度变换,将batch维和时间步维交换,并返回更新后的状态信息
        return outputs.permute(1, 0, 2), [enc_outputs, hidden_state, enc_valid_lens]

    @property
    def attention_weights(self):
        # 返回注意力权重
        return self._attention_weights


# 创建编码器和解码器的实例
encoder = d2l.Seq2SeqEncoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
encoder.eval()
decoder = Seq2SeqAttentionDecoder(vocab_size=10, embed_size=8, num_hiddens=16, num_layers=2)
decoder.eval()
# 创建输入序列X
X = torch.zeros((4, 7), dtype=torch.long)
# 初始化解码器的状态
state = decoder.init_state(encoder(X), None)
# 执行解码器的前向计算
output, state = decoder(X, state)
# 输出结果的形状以及状态信息的长度和形状
print(output.shape)
print(len(state))
print(state[0].shape)
print(len(state[1]))
print(state[1][0].shape)

在这里插入图片描述




训练

train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
encoder = d2l.Seq2SeqEncoder(len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
# 创建目标语言的带有注意力机制的解码器实例
decoder = Seq2SeqAttentionDecoder(len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
# 创建编码-解码模型实例
net = d2l.EncoderDecoder(encoder, decoder)
# 训练序列到序列模型
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
d2l.plt.show()



从零实现总代码

import torch
from torch import nn
from d2l import torch as d2l
import os


# 带有注意力机制的解码器基本接口
class AttentionDecoder(d2l.Decoder):
    """带有注意力机制的解码器基本接口"""

    def __init__(self, **kwargs):
        super(AttentionDecoder, self).__init__(**kwargs)

    @property
    def attention_weight(self):
        raise NotImplementedError


# 实现带有Bahdanau注意力的循环神经网络解码器
class Seq2SeqAttentionDecoder(AttentionDecoder):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs):
        # 调用父类AttentionDecoder的构造函数进行初始化
        super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)
        # 创建一个加性注意力机制的实例,用于计算注意力权重
        # 这里的key、value、query长度都是num_hiddens,所以可以用点乘的attention(Scaled Dot-Product Attention)
        # 这里用加性的是因为这里可以学参数,效果会好一点
        self.attention = d2l.AdditiveAttention(num_hiddens, num_hiddens, num_hiddens, dropout)
        # 这三行和seq2seq一样的
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers, dropout=dropout)
        self.dense = nn.Linear(num_hiddens, vocab_size)

    # 这里相比之前多了enc_valid_lens,需要告诉哪些是填充的
    def init_state(self, enc_outputs, enc_valid_lens, *args):
        outputs, hidden_state = enc_outputs
        # 对outputs进行维度变换,将batch维和时间步维交换,保持与解码器输入的一致性
        # 返回初始化的解码器隐藏状态
        return (outputs.permute(1, 0, 2), hidden_state, enc_valid_lens)

    def forward(self, X, state):
        enc_outputs, hidden_state, enc_valid_lens = state
        # 对输入序列进行嵌入表示,并进行维度变换,将batch维和时间步维交换
        X = self.embedding(X).permute(1, 0, 2)
        outputs, self._attention_weights = [], []
        # 每一步的context会变,所以对于decode的输入的每一个x
        for x in X:
            # hidden_state[-1]是取上一个时间的RNN的输出(最后一层的输出)
            # 获取当前时间步的查询向量,将隐藏状态的最后一个时间步的特征进行维度扩展
            # 加一个number of query这个维度进去,虽然这个query只有一个
            # 这里的query形状是[4, 1, 16]
            query = torch.unsqueeze(hidden_state[-1], dim=1)
            # ⭐计算注意力上下文向量,通过注意力机制对编码器的输出进行加权求和
            # query就是上一个时刻的最后一层的输出
            # key就是enc_outputs(形状:[批量大小、时间步、num_hiddens]),value就是enc_outputs
            # enc_valid_lens是一个长为bath_size的一个向量,其中第i个元素表示第i个样本的原始长度是几,因为不算填充
            # 这里的context形状是[4, 1, 16]
            context = self.attention(query, enc_outputs, enc_outputs, enc_valid_lens)
            # 将注意力上下文向量与当前时间步的输入进行拼接,用于输入到循环神经网络
            # 因为context里面多了一个长为1的维度(就是那个key的维度),所以x也加了一个维度,然后在最后一个维度concat起来
            x = torch.cat((context, torch.unsqueeze(x, dim=1)), dim=-1)
            # 执行循环神经网络的前向计算,得到输出和更新后的隐藏状态
            out, hidden_state = self.rnn(x.permute(1, 0, 2), hidden_state)
            # 将输出和注意力权重添加到对应的列表中
            outputs.append(out)
            self._attention_weights.append(self.attention.attention_weights)
        # 将输出列表中的结果进行拼接,并通过线性层进行映射
        outputs = self.dense(torch.cat(outputs, dim=0))
        # 对输出进行维度变换,将batch维和时间步维交换,并返回更新后的状态信息
        return outputs.permute(1, 0, 2), [enc_outputs, hidden_state, enc_valid_lens]

    @property
    def attention_weights(self):
        # 返回注意力权重
        return self._attention_weights


def read_data_nmt():
    """载入 “英语-法语” 数据集 """
    # 下载并解压数据集
    data_dir = d2l.download_extract('fra-eng')
    # 打开数据文件,使用utf-8编码读取文件内容
    with open(os.path.join(data_dir, 'fra.txt'), 'r', encoding='utf-8') as f:
        # 返回读取的文件内容
        return f.read()


def preprocess_nmt(text):
    """预处理 “英语-法语” 数据集"""

    def no_space(char, prev_char):
        # 检查是否需要在字符之前添加空格
        return char in set(',.!?') and prev_char != ''

    # 替换特殊字符为空格并转换为小写
    text = text.replace('\u202f', ' ').replace('\xa0', ' ').lower()
    # 根据规则在字符之前添加空格
    out = [
        ' ' + char if i > 0 and no_space(char, text[i - 1]) else char
        for i, char in enumerate(text)]
    # 将处理后的字符列表连接成字符串并返回
    return ''.join(out)


def tokenize_nmt(text, num_examples=None):
    """词元化 “英语-法语” 数据数据集 """
    # 初始化源语言和目标语言的列表
    source, target = [], []
    # 对每行文本进行遍历
    for i, line in enumerate(text.split('\n')):
        # 如果指定了num_examples,并且超过了指定数量,则退出循环
        if num_examples and i > num_examples:
            break
        # 将每行文本按制表符分割成源语言和目标语言的部分
        parts = line.split('\t')
        # 如果分割后有两个部分,说明包含了源语言和目标语言的内容
        if len(parts) == 2:
            # 将源语言部分以空格为分隔符进行词元化,存储到源语言列表中
            source.append(parts[0].split(' '))
            # 将目标语言部分以空格为分隔符进行词元化,存储到目标语言列表中
            target.append(parts[1].split(' '))
    # 返回词元化后的源语言列表和目标语言列表
    return source, target


def truncate_pad(line, num_steps, padding_token):
    """截断或填充文本序列"""
    # 如果文本序列的长度超过了指定的步数
    if len(line) > num_steps:
        # 截断文本序列,保留前num_steps个元素
        return line[:num_steps]
    # 在文本序列末尾填充padding_token,使其长度达到num_steps
    return line + [padding_token] * (num_steps - len(line))


def build_array_nmt(lines, vocab, num_steps):
    """将机器翻译的文本序列转换成小批量"""
    # 将文本序列中的每个词根据词汇表转换为对应的索引
    lines = [vocab[l] for l in lines]
    # 在每个文本序列末尾添加<eos>表示句子结束的索引
    lines = [l + [vocab['<eos>']] for l in lines]
    # 将每个文本序列截断或填充为固定长度,并转换为tensor形式
    array = torch.tensor([truncate_pad(l, num_steps, vocab['<pad>']) for l in lines])
    # 计算有效长度,即非填充部分的长度
    valid_len = (array != vocab['<pad>']).type(torch.int32).sum(1)
    # 返回转换后的tensor形式的文本序列和有效长度
    return array, valid_len


def load_data_nmt(batch_size, num_steps, num_examples=600):
    """返回翻译数据集的迭代器和词汇表"""
    # 载入并预处理文本数据集
    text = preprocess_nmt(read_data_nmt())
    # 将文本数据集进行词元化
    source, target = tokenize_nmt(text, num_examples)
    # 构建源语言的词汇表对象
    src_vocab = d2l.Vocab(source, min_freq=2,
                          reserved_tokens=['<pad>', '<bos>', '<eos>'])
    # 构建目标语言的词汇表对象
    tgt_vocab = d2l.Vocab(target, min_freq=2,
                          reserved_tokens=['<pad>', '<bos>', '<eos>'])
    # 将源语言文本序列转换为小批量数据,并获取有效长度
    src_array, src_valid_len = build_array_nmt(source, src_vocab, num_steps)
    # 将目标语言文本序列转换为小批量数据,并获取有效长度
    tgt_array, tgt_valid_len = build_array_nmt(target, tgt_vocab, num_steps)
    # 构建数据集的数组
    data_arrays = (src_array, src_valid_len, tgt_array, tgt_valid_len)
    # 构建数据迭代器
    data_iter = d2l.load_array(data_arrays, batch_size)
    # 返回数据迭代器和词汇表对象
    return data_iter, src_vocab, tgt_vocab


embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.1
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 250, d2l.try_gpu()

train_iter, src_vocab, tgt_vocab = load_data_nmt(batch_size, num_steps)
encoder = d2l.Seq2SeqEncoder(len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
# 创建目标语言的带有注意力机制的解码器实例
decoder = Seq2SeqAttentionDecoder(len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
# 创建编码-解码模型实例
net = d2l.EncoderDecoder(encoder, decoder)
# 训练序列到序列模型
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
d2l.plt.show()

在这里插入图片描述
在这里插入图片描述



简洁实现代码

import torch
from torch import nn
from d2l import torch as d2l
import os


# 带有注意力机制的解码器基本接口
class AttentionDecoder(d2l.Decoder):
    """带有注意力机制的解码器基本接口"""

    def __init__(self, **kwargs):
        super(AttentionDecoder, self).__init__(**kwargs)

    @property
    def attention_weight(self):
        raise NotImplementedError


# 实现带有Bahdanau注意力的循环神经网络解码器
class Seq2SeqAttentionDecoder(AttentionDecoder):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs):
        # 调用父类AttentionDecoder的构造函数进行初始化
        super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)
        # 创建一个加性注意力机制的实例,用于计算注意力权重
        # 这里的key、value、query长度都是num_hiddens,所以可以用点乘的attention(Scaled Dot-Product Attention)
        # 这里用加性的是因为这里可以学参数,效果会好一点
        self.attention = d2l.AdditiveAttention(num_hiddens, num_hiddens, num_hiddens, dropout)
        # 这三行和seq2seq一样的
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers, dropout=dropout)
        self.dense = nn.Linear(num_hiddens, vocab_size)

    # 这里相比之前多了enc_valid_lens,需要告诉哪些是填充的
    def init_state(self, enc_outputs, enc_valid_lens, *args):
        outputs, hidden_state = enc_outputs
        # 对outputs进行维度变换,将batch维和时间步维交换,保持与解码器输入的一致性
        # 返回初始化的解码器隐藏状态
        return (outputs.permute(1, 0, 2), hidden_state, enc_valid_lens)

    def forward(self, X, state):
        enc_outputs, hidden_state, enc_valid_lens = state
        # 对输入序列进行嵌入表示,并进行维度变换,将batch维和时间步维交换
        X = self.embedding(X).permute(1, 0, 2)
        outputs, self._attention_weights = [], []
        # 每一步的context会变,所以对于decode的输入的每一个x
        for x in X:
            # hidden_state[-1]是取上一个时间的RNN的输出(最后一层的输出)
            # 获取当前时间步的查询向量,将隐藏状态的最后一个时间步的特征进行维度扩展
            # 加一个number of query这个维度进去,虽然这个query只有一个
            # 这里的query形状是[4, 1, 16]
            query = torch.unsqueeze(hidden_state[-1], dim=1)
            # ⭐计算注意力上下文向量,通过注意力机制对编码器的输出进行加权求和
            # query就是上一个时刻的最后一层的输出
            # key就是enc_outputs(形状:[批量大小、时间步、num_hiddens]),value就是enc_outputs
            # enc_valid_lens是一个长为bath_size的一个向量,其中第i个元素表示第i个样本的原始长度是几,因为不算填充
            # 这里的context形状是[4, 1, 16]
            context = self.attention(query, enc_outputs, enc_outputs, enc_valid_lens)
            # 将注意力上下文向量与当前时间步的输入进行拼接,用于输入到循环神经网络
            # 因为context里面多了一个长为1的维度(就是那个key的维度),所以x也加了一个维度,然后在最后一个维度concat起来
            x = torch.cat((context, torch.unsqueeze(x, dim=1)), dim=-1)
            # 执行循环神经网络的前向计算,得到输出和更新后的隐藏状态
            out, hidden_state = self.rnn(x.permute(1, 0, 2), hidden_state)
            # 将输出和注意力权重添加到对应的列表中
            outputs.append(out)
            self._attention_weights.append(self.attention.attention_weights)
        # 将输出列表中的结果进行拼接,并通过线性层进行映射
        outputs = self.dense(torch.cat(outputs, dim=0))
        # 对输出进行维度变换,将batch维和时间步维交换,并返回更新后的状态信息
        return outputs.permute(1, 0, 2), [enc_outputs, hidden_state, enc_valid_lens]

    @property
    def attention_weights(self):
        # 返回注意力权重
        return self._attention_weights


embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.1
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 250, d2l.try_gpu()

train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
encoder = d2l.Seq2SeqEncoder(len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
# 创建目标语言的带有注意力机制的解码器实例
decoder = Seq2SeqAttentionDecoder(len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
# 创建编码-解码模型实例
net = d2l.EncoderDecoder(encoder, decoder)
# 训练序列到序列模型
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
d2l.plt.show()

在这里插入图片描述

在这里插入图片描述




将几个英语句子翻译成法语

# 将几个英语句子翻译成汉语
# 英语句子列表
engs = ['go', "i lost .", 'he\'s calm .', 'i\'m home .']
# 对应的汉语句子列表
fras = ['va !', 'j\' ai perdu .', 'il est calme .', 'je suis chez moi .']
# 遍历英语句子和汉语句子的对应关系
for eng, fra in zip(engs, fras):
    # 使用训练好的模型net对英语句子进行翻译,并获取注意力权重序列
    translation, dec_attention_weight_seq = d2l.predict_seq2seq(net, eng, src_vocab, tgt_vocab, num_steps, device, True)
    # 打印英语句子、翻译结果和BLEU分数
    print(f' {eng} => {translation}, ',
         f'bleu {d2l.bleu(translation, fra, k=2):.3f}')

在这里插入图片描述


该部分总代码

import torch
from torch import nn
from d2l import torch as d2l
import os


# 带有注意力机制的解码器基本接口
class AttentionDecoder(d2l.Decoder):
    """带有注意力机制的解码器基本接口"""

    def __init__(self, **kwargs):
        super(AttentionDecoder, self).__init__(**kwargs)

    @property
    def attention_weight(self):
        raise NotImplementedError


# 实现带有Bahdanau注意力的循环神经网络解码器
class Seq2SeqAttentionDecoder(AttentionDecoder):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs):
        # 调用父类AttentionDecoder的构造函数进行初始化
        super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)
        # 创建一个加性注意力机制的实例,用于计算注意力权重
        # 这里的key、value、query长度都是num_hiddens,所以可以用点乘的attention(Scaled Dot-Product Attention)
        # 这里用加性的是因为这里可以学参数,效果会好一点
        self.attention = d2l.AdditiveAttention(num_hiddens, num_hiddens, num_hiddens, dropout)
        # 这三行和seq2seq一样的
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers, dropout=dropout)
        self.dense = nn.Linear(num_hiddens, vocab_size)

    # 这里相比之前多了enc_valid_lens,需要告诉哪些是填充的
    def init_state(self, enc_outputs, enc_valid_lens, *args):
        outputs, hidden_state = enc_outputs
        # 对outputs进行维度变换,将batch维和时间步维交换,保持与解码器输入的一致性
        # 返回初始化的解码器隐藏状态
        return (outputs.permute(1, 0, 2), hidden_state, enc_valid_lens)

    def forward(self, X, state):
        enc_outputs, hidden_state, enc_valid_lens = state
        # 对输入序列进行嵌入表示,并进行维度变换,将batch维和时间步维交换
        X = self.embedding(X).permute(1, 0, 2)
        outputs, self._attention_weights = [], []
        # 每一步的context会变,所以对于decode的输入的每一个x
        for x in X:
            # hidden_state[-1]是取上一个时间的RNN的输出(最后一层的输出)
            # 获取当前时间步的查询向量,将隐藏状态的最后一个时间步的特征进行维度扩展
            # 加一个number of query这个维度进去,虽然这个query只有一个
            # 这里的query形状是[4, 1, 16]
            query = torch.unsqueeze(hidden_state[-1], dim=1)
            # ⭐计算注意力上下文向量,通过注意力机制对编码器的输出进行加权求和
            # query就是上一个时刻的最后一层的输出
            # key就是enc_outputs(形状:[批量大小、时间步、num_hiddens]),value就是enc_outputs
            # enc_valid_lens是一个长为bath_size的一个向量,其中第i个元素表示第i个样本的原始长度是几,因为不算填充
            # 这里的context形状是[4, 1, 16]
            context = self.attention(query, enc_outputs, enc_outputs, enc_valid_lens)
            # 将注意力上下文向量与当前时间步的输入进行拼接,用于输入到循环神经网络
            # 因为context里面多了一个长为1的维度(就是那个key的维度),所以x也加了一个维度,然后在最后一个维度concat起来
            x = torch.cat((context, torch.unsqueeze(x, dim=1)), dim=-1)
            # 执行循环神经网络的前向计算,得到输出和更新后的隐藏状态
            out, hidden_state = self.rnn(x.permute(1, 0, 2), hidden_state)
            # 将输出和注意力权重添加到对应的列表中
            outputs.append(out)
            self._attention_weights.append(self.attention.attention_weights)
        # 将输出列表中的结果进行拼接,并通过线性层进行映射
        outputs = self.dense(torch.cat(outputs, dim=0))
        # 对输出进行维度变换,将batch维和时间步维交换,并返回更新后的状态信息
        return outputs.permute(1, 0, 2), [enc_outputs, hidden_state, enc_valid_lens]

    @property
    def attention_weights(self):
        # 返回注意力权重
        return self._attention_weights


embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.1
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 250, d2l.try_gpu()

train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
encoder = d2l.Seq2SeqEncoder(len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
# 创建目标语言的带有注意力机制的解码器实例
decoder = Seq2SeqAttentionDecoder(len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
# 创建编码-解码模型实例
net = d2l.EncoderDecoder(encoder, decoder)
# 训练序列到序列模型
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
# 将几个英语句子翻译成汉语
# 英语句子列表
engs = ['go', "i lost .", 'he\'s calm .', 'i\'m home .']
# 对应的汉语句子列表
fras = ['va !', 'j\' ai perdu .', 'il est calme .', 'je suis chez moi .']
# 遍历英语句子和汉语句子的对应关系
for eng, fra in zip(engs, fras):
    # 使用训练好的模型net对英语句子进行翻译,并获取注意力权重序列
    translation, dec_attention_weight_seq = d2l.predict_seq2seq(net, eng, src_vocab, tgt_vocab, num_steps, device, True)
    # 打印英语句子、翻译结果和BLEU分数
    print(f' {eng} => {translation}, ',
         f'bleu {d2l.bleu(translation, fra, k=2):.3f}')




将注意力权重序列进行拼接


# 将注意力权重序列进行拼接,并调整形状
attention_weights = torch.cat([step[0][0][0] for step in dec_attention_weight_seq], 0).reshape((1, 1, -1, num_steps))     



可视化注意力权重

# 可视化注意力权重
# 显示注意力权重的热图,仅显示与输入英语句子对应的位置
d2l.show_heatmaps(attention_weights[:,:,:,:len(engs[-1].split()) + 1].cpu(),
                 xlabel = 'key positions', ylabel = 'Query posistions')

在这里插入图片描述


该部分总代码

import torch
from torch import nn
from d2l import torch as d2l
import os


# 带有注意力机制的解码器基本接口
class AttentionDecoder(d2l.Decoder):
    """带有注意力机制的解码器基本接口"""

    def __init__(self, **kwargs):
        super(AttentionDecoder, self).__init__(**kwargs)

    @property
    def attention_weight(self):
        raise NotImplementedError


# 实现带有Bahdanau注意力的循环神经网络解码器
class Seq2SeqAttentionDecoder(AttentionDecoder):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers, dropout=0, **kwargs):
        # 调用父类AttentionDecoder的构造函数进行初始化
        super(Seq2SeqAttentionDecoder, self).__init__(**kwargs)
        # 创建一个加性注意力机制的实例,用于计算注意力权重
        # 这里的key、value、query长度都是num_hiddens,所以可以用点乘的attention(Scaled Dot-Product Attention)
        # 这里用加性的是因为这里可以学参数,效果会好一点
        self.attention = d2l.AdditiveAttention(num_hiddens, num_hiddens, num_hiddens, dropout)
        # 这三行和seq2seq一样的
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = nn.GRU(embed_size + num_hiddens, num_hiddens, num_layers, dropout=dropout)
        self.dense = nn.Linear(num_hiddens, vocab_size)

    # 这里相比之前多了enc_valid_lens,需要告诉哪些是填充的
    def init_state(self, enc_outputs, enc_valid_lens, *args):
        outputs, hidden_state = enc_outputs
        # 对outputs进行维度变换,将batch维和时间步维交换,保持与解码器输入的一致性
        # 返回初始化的解码器隐藏状态
        return (outputs.permute(1, 0, 2), hidden_state, enc_valid_lens)

    def forward(self, X, state):
        enc_outputs, hidden_state, enc_valid_lens = state
        # 对输入序列进行嵌入表示,并进行维度变换,将batch维和时间步维交换
        X = self.embedding(X).permute(1, 0, 2)
        outputs, self._attention_weights = [], []
        # 每一步的context会变,所以对于decode的输入的每一个x
        for x in X:
            # hidden_state[-1]是取上一个时间的RNN的输出(最后一层的输出)
            # 获取当前时间步的查询向量,将隐藏状态的最后一个时间步的特征进行维度扩展
            # 加一个number of query这个维度进去,虽然这个query只有一个
            # 这里的query形状是[4, 1, 16]
            query = torch.unsqueeze(hidden_state[-1], dim=1)
            # ⭐计算注意力上下文向量,通过注意力机制对编码器的输出进行加权求和
            # query就是上一个时刻的最后一层的输出
            # key就是enc_outputs(形状:[批量大小、时间步、num_hiddens]),value就是enc_outputs
            # enc_valid_lens是一个长为bath_size的一个向量,其中第i个元素表示第i个样本的原始长度是几,因为不算填充
            # 这里的context形状是[4, 1, 16]
            context = self.attention(query, enc_outputs, enc_outputs, enc_valid_lens)
            # 将注意力上下文向量与当前时间步的输入进行拼接,用于输入到循环神经网络
            # 因为context里面多了一个长为1的维度(就是那个key的维度),所以x也加了一个维度,然后在最后一个维度concat起来
            x = torch.cat((context, torch.unsqueeze(x, dim=1)), dim=-1)
            # 执行循环神经网络的前向计算,得到输出和更新后的隐藏状态
            out, hidden_state = self.rnn(x.permute(1, 0, 2), hidden_state)
            # 将输出和注意力权重添加到对应的列表中
            outputs.append(out)
            self._attention_weights.append(self.attention.attention_weights)
        # 将输出列表中的结果进行拼接,并通过线性层进行映射
        outputs = self.dense(torch.cat(outputs, dim=0))
        # 对输出进行维度变换,将batch维和时间步维交换,并返回更新后的状态信息
        return outputs.permute(1, 0, 2), [enc_outputs, hidden_state, enc_valid_lens]

    @property
    def attention_weights(self):
        # 返回注意力权重
        return self._attention_weights


embed_size, num_hiddens, num_layers, dropout = 32, 32, 2, 0.1
batch_size, num_steps = 64, 10
lr, num_epochs, device = 0.005, 250, d2l.try_gpu()

train_iter, src_vocab, tgt_vocab = d2l.load_data_nmt(batch_size, num_steps)
encoder = d2l.Seq2SeqEncoder(len(src_vocab), embed_size, num_hiddens, num_layers, dropout)
# 创建目标语言的带有注意力机制的解码器实例
decoder = Seq2SeqAttentionDecoder(len(tgt_vocab), embed_size, num_hiddens, num_layers, dropout)
# 创建编码-解码模型实例
net = d2l.EncoderDecoder(encoder, decoder)
# 训练序列到序列模型
d2l.train_seq2seq(net, train_iter, lr, num_epochs, tgt_vocab, device)
# 将几个英语句子翻译成汉语
# 英语句子列表
engs = ['go', "i lost .", 'he\'s calm .', 'i\'m home .']
# 对应的汉语句子列表
fras = ['va !', 'j\' ai perdu .', 'il est calme .', 'je suis chez moi .']
# 遍历英语句子和汉语句子的对应关系
for eng, fra in zip(engs, fras):
    # 使用训练好的模型net对英语句子进行翻译,并获取注意力权重序列
    translation, dec_attention_weight_seq = d2l.predict_seq2seq(net, eng, src_vocab, tgt_vocab, num_steps, device, True)
    # 打印英语句子、翻译结果和BLEU分数
    print(f' {eng} => {translation}, ',
          f'bleu {d2l.bleu(translation, fra, k=2):.3f}')

# 将注意力权重序列进行拼接,并调整形状
attention_weights = torch.cat([step[0][0][0] for step in dec_attention_weight_seq], 0).reshape((1, 1, -1, num_steps))
# 可视化注意力权重
# 显示注意力权重的热图,仅显示与输入英语句子对应的位置
d2l.show_heatmaps(attention_weights[:, :, :, :len(engs[-1].split()) + 1].cpu(),
                  xlabel='key positions', ylabel='Query posistions')
d2l.plt.show()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值