- 博客(204)
- 资源 (1)
- 收藏
- 关注
原创 实验四:进程间共享内存
1.Windows下的进程间共享内存是如何实现的?2.对于读写进程,物理内存是什么时候分配的?3.读写进程之间的同步和互斥在共享内存机制中已经存在了,还是需要用户自己来实现?4.利用“虚拟内存的检测”程序检测读进程所映射的虚拟地址空间块的信息。
2022-10-31 06:56:01 1757
原创 实验三、存储管理
1.进程的虚拟地址空间可以映射到哪些文件?1.访问没有提交的进程空间能成功吗?2.使用MEM_COMMIT标志调用VirtualAlloc()成功后物理内存已经分配了吗?3.利用“虚拟内存的检测”程序检测上述虚拟内存分配方式4所分配虚拟地址块的信息。
2022-10-31 06:37:17 1727
原创 实验二:并发与调度
1.本实验中事件是如何在父子进程间共享的?2.Windows的哪个API对应事件的P操作?哪个API对应事件的V操作?3.本实验中是哪个进程向哪个进程发送事件的?4.获取和发送事件的调用位置有什么特点?5.请通过修改程序并对比运行结果来说明Windows的自动复位事件和人工复位事件的区别。6.Windows旳事件是计数的吗?1.如果main()中没有语句WaitForSingleObject()会出现什么现象?为什么?2.为什么两个线程使用同一个句柄来引用互斥体?3.Windows的哪个AP
2022-10-31 06:08:44 2363
原创 实验一:进程控制
1.运行后在系统任务管理器中查看所创建进程映像名,有什么规律?2.父子进程使用同一程序,如何进行区别?3.不同进程的克隆ID是如何获取到的?4.如果在克隆ID为0的进程中创建克隆ID为1-8的进程,应该如何修改程序?1.进程的优先级存放在哪里?1.一个进程终止其父进程所需的句柄是如何获取的?2.Windows下的进程ID和进程句柄有什么区别?3.试通过修改程序来说明对一个进程OpenProcess()多次, 返回的句柄值是否相同?
2022-10-30 22:38:34 2324
原创 操作系统--期末总结
1. 一个32位地址的计算机使用两级页表。虚拟地址被分成9位的一级页表域、11位的二级页表域和一个页内偏移量,请问:(1)页面大小是多少字节?(2)一共有多少个页面?(3)一共有多少个页表项?3. 给定一个虚拟内存系统的如下数据:(1)TLB有1024项,可以在1ns内访问。(2)页表项可以在100ns内访问。(3)若有一个被替换的页未被修改过,则处理一个缺页中断需要8 ms;若被替换的页已被修改过,则处理一个缺页中断需要20 ms。假定被替换的页70%被修改过。如果TLB的命中率是
2022-10-29 17:41:33 2082 3
原创 深度学习----------------------残差网络ResNet
①残差块使得很深的网络更加容易训练甚至可以训练一千层的网络②残差网络对随后的深度神经网络设计产生了深远影响,无论是卷积类网络还是全连接类网络。
2024-08-22 23:44:57 1095
原创 深度学习-----------------------批量归一化
①批量归一化固定小批量中的均值和方差,然后学习出适合的偏移和缩放(当每一个层的均值和方差都固定后,就不会出现像之前学习率太大的话,靠近loss上面的梯度太大,就梯度爆炸了,学习率太小的话,靠近数据的梯度太小了,就算不动(梯度消失)。②可以加速收敛速度,但一般不改变模型精度。
2024-08-21 15:02:09 1047
原创 深度学习-----------------------含并行连结的网络GoogLeNet
Inception块用4条有不同超参数的卷积层和池化层的路来抽取不同的信息。它的一个主要优点是模型参数小,计算复杂度低。GoogleNet使用了9个Inception块,是第一个达到上百层的网络。后续有一系列改进。
2024-08-19 21:58:17 843 1
原创 深度学习---------------------网络中的网络NiN
① 在全局平均池化层(GAP)被提出之前,常用的方式是将feature map直接拉平成一维向量,但是GAP不同,是将每个通道的二维图像做平均,最后也就是每个通道对应一个均值。② 假设卷积层的最后输出是h × w × d的三维特征图,具体大小为6 × 6 × 3,经过GAP转换后,变成了大小为 1 × 1 × 3 的输出值,也就是每一层 h × w 会被平均化成一个值,如下图所示。③ GPA优势:1、抑制过拟合。
2024-08-19 17:22:13 646
原创 深度学习-------------------使用块的网络VGG
①VGG使用可重复使用的卷积块来构建深度卷积神经网络。②不同的卷积块个数和超参数可以得到不同复杂度的变种。
2024-08-17 14:03:40 931
原创 深度学习----------------------深度卷积神经网络AlexNet
①AlexNet是更大更深的LeNet,比LeNet多10倍的参数个数,多260倍的计算复杂度。②新加入了丢弃法,ReLU,最大池化层和数据增强。
2024-08-16 21:11:37 616
原创 深度学习------------------卷积神经网络(LeNet)
①LeNet是早期成功的神经网络②先使用卷积层来学习图片空间信息③然后使用全连接层来转换到类别空间。
2024-08-14 23:41:01 839
原创 深度学习------------池化层
①池化层返回窗口中最大或平均值②缓解卷积层对位置的敏感性③同样有窗口大小、填充和步幅作为超参数设定一个任意大小的矩形池化窗口,并分别设定填充和步幅的高度和宽度# 池化窗口的大小,高度为2,宽度为3。
2024-08-13 19:58:57 1112
原创 深度学习-----------------多个输入和输出通道
①输入通道数是卷积层的超参数。②每个输入通道都有独立的二维卷积核,所有通道结果相加得到一个输出通道结果。③每个输出通道有独立的三维卷积核。
2024-08-12 21:46:06 1143
原创 深度学习----------------卷积层里的填充和步幅
①填充和步幅是卷积层的超参数。②填充在输入周围添加额外的行/列,来控制输出形状的减少量。③步幅是每次滑动核窗口时的行/列的步长,可以成倍的减少输出形状。
2024-08-11 17:32:26 702
原创 深度学习---------------卷积层
对全连接层使用平移不变性和局部性得到卷积层。卷积层将输入和核矩阵进行交叉相关,加上偏移后得到输出。核矩阵和偏移是可学习的参数。核矩阵的大小是超参数。
2024-08-10 22:48:57 752
原创 深度学习---------------神经网络基础
①将输入数据作为其前向传播函数的参数。②通过前向传播函数来生成输出。注意:输出的形状可能与输入的形状不同。例如:我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个度为256的输出。③计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常是自动发生的。④存储和访问前向传播计算所需的参数。⑤根据需要初始化模型参数。我们从零开始编写一个块。它包含一个多层感知机,其具有256个隐藏单元的隐藏层和一个10维输出层。注意,下面的MLP类继承了表示块的类。
2024-08-09 13:43:55 907
原创 深度学习--------------Kaggle房价预测
目录下载和缓存数据集访问和读取数据集总代码数据预处理训练K折交叉验证模型选择总代码提交你的Kaggle预测提交Kaggle下载和缓存数据集import hashlibimport osimport tarfileimport zipfileimport requests # download传递的参数分别是数据集的名称、缓存文件夹的路径def download(name, cache_dir=os.path.join('..', 'data')): # @save """下载一
2024-08-07 17:48:05 925
原创 jupyter下载
Anaconda下载参考链接:https://blog.csdn.net/qq_48372575/article/details/125630622设置Jupyter Notebook的代码路径 在“此电脑”中搜索。删除最后一个""后面的的内容,包括“\”。用记事本打开它。按下ctrl+F就可以开始查找。查找内容如下:找到之后,右键该文件,找到“发送到”,找到“桌面快捷方式”。然后就会发现桌面上已经建立好了!
2024-08-06 17:20:59 1003
原创 深度学习-----------数值稳定性
当数值过大或者过小时会导致数值问题。常发生在深度模型中,因为其会对n个数累乘。合理的权重初始值和激活函数的选取可以提升数值稳定性。
2024-08-04 17:26:08 712
原创 深度学习------------丢弃法dropout
①丢弃法将一些输出项随机置0来控制模型复杂度②常作用在多层感知机的隐藏层输出上③丢弃概率是控制模型复杂度的超参数引入Fashion-MNIST数据集,定义具有两个隐藏层的多层感知机,每个隐藏层包含256个单元。可以将暂退法应用于每个隐藏层的输出(在激活函数之后), 并且可以为每一层分别设置暂退概率常见的技巧是在靠近输入层的地方设置较低的暂退概率。下面的模型将第一个和第二个隐藏层的暂退概率分别设置为0.2和0.5, 并且暂退法只在训练期间有效。
2024-08-03 16:08:53 1098
原创 深度学习------权重衰退
权重衰退通过L2正则项使得模型参数不会过大,从而控制模型复杂度。正则项权重是控制模型复杂度的超参数。实现这一惩罚最方便的方法是对所有项求平方后并将它们求和。下面的代码将模型拟合训练数据集并在测试数据集上进行评估。线性网络和平方损失没有变化, 所以我们通过d2l.linreg和导入它们。唯一的变化是损失现在包括了惩罚项。# 用lambda匿名函数定义net,输入为X,输出为d2l.linreg(X, w, b)# lambd是L2正则化项系数,是为了调整正则化的强度# 增加了L2范数惩罚项,
2024-08-02 18:23:23 947
原创 深度学习--------模型选择+过拟合和欠拟合
训练数据集:训练模型参数验证数据集:选择模型超参数非大数据集上通常使用k折交叉验证模型容量需要匹配数据复杂度,否则可能导致欠拟合和过拟合。统计机器学习提供数学工具来衡量模型复杂度。实际中一般靠观察训练误差和验证误差。# 均方误差损失,reduction='none'直接返回每个元素的损失input_shape = train_features.shape[-1] # 得到特征数量# 不设置偏置,因为我们已经在多项式中实现了它# 第一个参数是输入特征的数量,第二个参数是输出特征的数量。
2024-08-01 16:50:39 1049
原创 深度学习-感知机
①感知机是一个二分类模型,是最早的AI模型之一。②它的求解算法等价于使用批量大小为1的梯度下降。③它不能拟合XOR函数,导致的第一次AI寒冬①多层感知机使用隐藏层和激活函数来得到非线性模型。②常用激活函数是Sigmoid,Tanh,ReLU。③使用Softmax来处理多类分类。④超参数为隐藏层数,和各个隐藏层大小。①x>0,输出为什么是1,通过设计w和b吗?还是通过训练?这里的x并不是前面的输入特征x,而是x=+b②神经网络中的一层网络是指什么?
2024-07-31 18:43:27 312
原创 Pycharm中安装Pytorch的库
step1:step2:step3:step4:step5:step6:step7:Pycharm plot独立窗口显示
2024-07-01 13:38:22 254
原创 深度学习-Softmax回归+损失函数+图像分类数据集
回归估计一个连续值分类预测一个离散类别例如:MNIST:手写数字识别(10类)ImageNet:自然物体分类(1000类)将人类蛋白质显微镜图片分为28类将恶意软件分为9个类别将恶意的Wikipedia评论分成7类单连续数值输出自然区间R跟真实值的区别作为损失通常多个输出输出i是预测为第i类的置信度解释举例说明:softmax回归原理及损失函数-跟李沐老师动手学深度学习对类别进行一位有效编码使用均方损失训练最大值预测选取i,使得最大化OiO_iOi的置信度的值作为预测。其中
2024-05-24 20:44:25 893 1
原创 深度学习-线性回归+基础优化算法
1、线性回归是对n维输入的加权,外加偏差。2、使用平方损失来衡量预测值和真实值的差异。3、线性回归有显示解。4、线性回归可以看做是单层神经网络。我们将从零开始实现整个方法,包括数据流水线、模型、损失函数和小批量随机梯度下降优化器。"""生成y=Xw+b+噪声。"""print('features:', features[0], '\nlabel:', labels[0])里插入代码片正态分布函数:normal()
2024-04-28 17:32:03 1221
原创 深度学习-自动求导
构造计算图前向:执行图,存储中间结果反向:从相反方向执行图去除不需要的枝计算复杂度:O(n),n是操作子个数通常正向和方向的代价类似内存复杂度:O(n),因为需要存储正向的所有中间结果正向累积:它的内存复杂度是O(1),即不管多深我不需要存储它的结果,而反向累积则需要存储。反向从根节点向下扫,可以保证每个节点只扫一次;正向从叶节点向上扫,会导致上层节点可能需要被重复扫多次。(正向中 子节点比父节点先计算,因此也无法像反向那样把本节点的计算结果传给每个子节点。
2024-04-26 11:41:33 886
原创 深度学习-线性代数
keepdim=True是一个参数,当设置为True时,它会使得聚合操作后的张量在被聚合的维度上仍然保持一个大小为1的维度,而不是完全去除这个维度。第一个位置的元素保持不变(因为没有之前的元素可以相加),之后的每个位置的元素都是它自身和它之前所有元素的和。A是一个m×n的矩阵,x是一个n×1的一列,所以得到一个m的列向量。axis=1 即第二维度------按行方向操作。axis=1即第二维度------按列方向操作。二维的:axis=0即第一维度------按行方向操作。此时,就跟二维的有所区别。
2024-04-24 22:56:58 1662
原创 深度学习-数据预处理
exist_ok=True:当设置为True时,如果目录已经存在,os.makedirs()不会引发错误。iloc[]是切片操作,data.iloc[:, 0:2]中0:2 表示取从第 0 列和第1列。默认情况下,如果目录已存在,os.makedirs()会引发一个FileExistsError。os.path.join(‘. .’, ‘data’): ‘. .’(代表上一级目录。data.iloc[:, 2]中2表示下标为2的列,即第三列。首先先选出数据类型再求平均值填充。
2024-04-23 22:36:28 545
MFCBinaryTree
2022-12-25
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人