OLTP和OLAP的区别以及使用场景

本文介绍了OLTP(在线事务处理)主要用于实时业务操作,如数据库中的增删改查,响应时间要求高,适合业务人员使用;而OLAP(在线分析处理)处理历史数据,用于数据分析和决策支持,数据量大,典型代表如Hive,主要服务于分析决策人员。数据仓库是两者之间的桥梁,为决策提供支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、什么是OLTP?

全称OnLine Transaction Processing,联机事务处理系统,就是对数据的增删改查等操作

存储的是业务数据,来记录某类业务事件的发生,比如下单、支付、注册等

典型代表有Mysql、Oracle等数据库,对应的网站、系统应用后端数据库

针对事务进行操作,对响应时间要求高,面向前台应用的,应用比较简单,数据量相对较少,是GB级别的

面向群体:业务人员

当数据积累到一定的程度,需要对过去发生的事情做一个总结分析时,为公司做决策提供支持时,数据量较大TB、PB级别的,就需要OLAP了

2、什么是OLAP?

全称OnLine Analytical Processing,联机分析处理系统

存储的是历史数据,对应的风控平台、BI平台、数据可视化等系统就属于

OLAP是数据仓库系统的主要应用,支持复杂的分析操作,侧重越策,并且提供直观易懂的查询结果

典型代表有Hive、ClickHouse

针对基于查询的分析系统,基于数据来源于生产系统中的操作数据,数据量非常大,常规是TB级别的

面向群体:分析决策人员

在这里插入图片描述

数仓 DataWarehouse 简称 DW或DWH

在这里插入图片描述

数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持。它处于分析性报告和决策支持目的的创建。
数据仓库本身并不“生产”任何数据,同时自身也不需要消费任何的数据,数据来源于外部,并且开放给外部应用,这也是为什么叫“仓库”,而不叫“工厂”的原因
数据仓库是决策支持系统(dss)和联机分析应用数据源的结构化数据环境。数据仓库研究和解决从数据库中获取信息的问题。数据仓库的特征在于面向主题、继承性、稳定性和时变性。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值