初步了解5G PRACH信号以及的生成方法

PRACH是物理随机接入信道,用于终端与网络的初始连接。文章介绍了PRACH的时域结构,包括ZC序列,以及长序列(839)和短序列(139)的分类。短序列在NR中用于小/正常单元和室内场景,具有更好的时变通道和频率误差鲁棒性。PRACH的生成涉及ZC序列计算、移位和FFT变换。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(38条消息) [4G&5G专题-114]:部署 - LTE PRACH前导码格式、ZC序列的生成规则与规划_lte prach format_文火冰糖的硅基工坊的博客-CSDN博客

5G | ShareTechnote

PRACH信道与随机接入过程

PRACH: Physical Random Access Channel,物理随机接入信道。

随机接入过程:是从终端通过PRACH信道发送随机接入前导码开始的,然后尝试与网络间建立RRC信令连接。

在任何情况下,如果终端需要同网络建立通信,都需先发起随机过程,向网络申请资源。

PRACH的结构

时域结构:由CP,前导序列,和GP组成

 LTE中,前导序列使用的是ZC序列,ZC序列可以看参考文章1了解,不知道是否有其他方法,本文NR信号用的也是ZC序列。

下面是Format 0和Format B4的结构,下图中,以下是RACH序文的时域结构示意图。该内容来自参考文章2。

数字0.509 ns(0.509 x 10^-6 ms)是参数Tc的值,64是参数K(Kappa)的值。

 

关于Ts和Tc的解释没完全理解,只知道如何计算,有时间再细究吧。

这里的源点数应该是在30.72M采样率下统计的,因此如果是计算某采样率下的点数,比如1.28M情况下的,采样点数为:24576*1.28/30.72=1024。

Format 0:

Format B4:

 

长序列和短序列的分类

PRACH可以简单分为长序列和短序列。

长序列是和LTE相同,短序列新增了一些,目前接触不到该方面,保留原文作为了解。

在LTE中,只使用一种类型的序列长度(在LTE中格式长度也不同,但构建块序列的长度总是相同的),在NR中使用两种类型的序列长度,称为长序列和短序列。 

长序列:长度839,支持源自LTE前导码的四种前导码格式,主要针对大型小区部署场景。这些格式只能在FR1中使用,并且其副载波间距为1.25或5 kHz。 

短序列:长度为139,在NR中引入了9种不同的前导码格式,主要针对小/正常单元和室内部署场景。 短前导格式可用于15、15或30 kHz的FR1和60或120 kHz的FR2。 与LTE相比,对于短前导格式的设计,每个OFDM符号的最后一部分作为下一个OFDM符号的CP,前导OFDM符号的长度等于数据OFDM符号的长度。

短序列的好处:

首先,它允许gNB接收机使用相同的快速傅里叶变换(FFT)来进行数据和随机访问的前导检测。

其次,由于每个PRACH前导中包含多个较短的OFDM符号,新的短前导格式对时变通道和频率误差更具鲁棒性。

最后,它支持在PRACH接收过程中进行模拟波束扫描的可能性,这样在gNB上就可以用不同的波束接收到相同的前导码。

PRACH的计算生成

终于到主要内容了,计算过程可以在时域也可以在频域计算生成。

1.时域的计算过程

        时域需要考虑的东西太多,不同格式情况下时域中PRACH的具体位置和数量都不同,生成有些麻烦,暂时用不上,先摆出来以后在研究。

 Example 15 > TDD FR1 RachConfig = 160, SCS = 30 Khz, Format B4

 TDD FR1 RachConfig = 156, SCS = 30 Khz, Format B4

 

 

2.频域的计算过程

 

其中需要配置的参数有:

LRA  :长序列839,短序列139

u  :由Root Sequence Index决定

长序列时:

 短序列时:

 Ncs :由zeroCorrelationZoneConfig和restrictedSetConfig确定,其值由下面的映射表确定

Ncs for preamble formats with  

 

 Ncs for preamble formats with

 

 Ncs for preamble formats with

 

 可以看出,生成prach信号只需要三步:

1.生成ZC序列,根据上述参数和该公式生成ZC序列。

2.该算式是生成移位序列,Cv是移位的长度。

3.该算式就是做了FFT。

这样就得到了prach的信号。

### 卷积神经网络(CNN)相关研究论文 对于寻找关于卷积神经网络(CNN)的研究论文,可以从以下几个方面入手: #### 1. 论文数据库和平台 多个在线资源提供大量与CNN相关的学术文章。Google Scholar是一个广泛使用的搜索引擎,能够帮助找到特定主题下的最新研究成果[^1]。 #### 2. 关键领域应用 由于近年来也开始将CNN应用于自然语言处理(NLP),并取得了有趣的结果,在这些方向上的探索同样值得关注。例如,有研究表明通过总结什么是CNN以及如何用于NLP可以更好地理解其背后的直觉[^2]。 #### 3. 基础理论和技术细节 了解完整的连接层中神经元的工作原理也是重要的基础知识之一;这有助于更深入地学习CNN的设计理念及其运作机制。具体来说,这类层内的每个神经元都与上一层的所有激活单元相连,并可通过矩阵运算加上偏置项来进行计算[^3]。 为了方便起见,这里给出一些具体的检索建议: - 使用关键词组合如:“convolutional neural networks”,“image recognition”,“natural language processing” - 查看顶级会议发表的文章,比如ICML、CVPR等 - 浏览知名期刊,像《IEEE Transactions on Pattern Analysis and Machine Intelligence》 ```python import requests from bs4 import BeautifulSoup def search_papers(query): url = f"https://scholar.google.com/scholar?q={query}" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') titles = [] for item in soup.select('.gs_rt'): title = item.find('a').text if item.find('a') else '[No Title]' titles.append(title) return titles[:5] papers = search_papers("convolutional neural network") print("\n".join(papers)) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yan0224

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值