李宏毅GAN学习(八) photo editing

生成器是已经训练好的一个网络,encoder是一个跟判别器很像的网络,可以用判别器初始化encoder(最后一层除外,因为网络的输出格式不一样),然后训练网络。 假如已知图片的标签,比如根据头发长短分成两类。下图左为长发,右为非长发,将长发的所有图片输入encoder,将得到的所有z求均值,...

2018-12-29 19:25:11

阅读数 887

评论数 0

李宏毅GAN学习(七) feature extraction

iofoGAN 一般的GAN的输入是一个随机的向量,输出是一张图片,不知道输入向量中的某一维对输出有什么影响,iofoGAN就是来做这件事的,infoGAN的网络结构如下。 相比于普通的GAN,iofoGAN多了一个分类器。如果Generator学到c的每一个维度对X的影响,则Classi...

2018-12-29 15:15:04

阅读数 193

评论数 0

李宏毅GAN学习(六)tips for improving GAN

GAN不好训练的原因:只要两个分布没有重合部分,loss都一样,也就没有办法一步一步去接近真实分布 如果最后的判别器是一个sigmoid的二分类网络,并且已经训练好了,由于sigmoid两边的梯度很小,所以生成器就没有办法得到有效的学习。LSGAN(Least Square GAN)来解...

2018-12-27 20:31:38

阅读数 61

评论数 0

李宏毅GAN学习(五)fGAN

数学上特别吊,实际好像没什么用 不同的f对应不同的divergence 证明:   选择不同的divergence就有不同的f*,可以解决模型坍塌的问题 产生的原因: ...

2018-12-27 19:21:30

阅读数 96

评论数 0

李宏毅GAN学习(四)GAN的基本理论

需要用GAN来找到真实的数据分布 在没有GAN之前,使用的是极大似然估计找到 当我们在训练一个判别器的时候就是评估从这两个分布采样出来的数据的JS散度 由上图可知,在训练GAN的生成器时,如果一次更新太多,则可能会导致,min的对象变大,但...

2018-12-27 16:53:10

阅读数 123

评论数 1

李宏毅GAN学习(三)Unsupervised CGAN

CGAN是监督学习,需要样本标签才能训练 Unsupervised CGAN训练的时候不需要样本的标签 一般有两种方式完成无监督的CGAN 第一种方法:direct transformation 以上就是用自然风景生成一张梵高的画的网络模型结构 domain X与domain Y...

2018-12-27 14:06:38

阅读数 105

评论数 0

李宏毅GAN学习(二)CGAN

CGAN:Conditional GAN 如果用手写0123456789那个数据集训练原始GAN,最终生成器生成的是0123456789,无法只产生具体的数字,比如0。CGAN可以控制输出只产生特定类别的输出。 以文字生成图片为例: 用传统监督学习的方式来完成这个任务: 数据集是(文字描述...

2018-12-26 21:42:23

阅读数 142

评论数 0

李宏毅GAN学习(一)入门

GAN的目的:找出一个生成器,给一个随机向量(vector)利用神经网络(Generator)生成一张图片一个句子或者一篇文章 找出满足要求的生成器必须利用判别器,判别器判断image是真实的database里面的图片还是生成器生成的图片。 生成器与判别器的训练 1、固定生成器的值,...

2018-12-26 20:53:40

阅读数 198

评论数 0

Ubuntu安装spark

直接  pip install pyspark  

2018-10-31 10:41:00

阅读数 180

评论数 0

二叉树的非递归遍历

前序遍历:1、将根节点入栈,                   2、弹出栈的顶点,并访问该节点P,                   3、将节点P的右节点(如果存在的话)入栈,                   4、将节点P的左节点(如果存在的话)入栈,               ...

2018-08-19 17:30:57

阅读数 69

评论数 0

Python six.PY3

今天看别人的代码看到six.PY3,不知道是什么意思,就跳进PY3的定义看发现就是下面的代码(电脑上的Python是3X) PY2 = False PY3 = True  

2018-08-11 22:04:38

阅读数 440

评论数 0

从多个tfrecord文件中无限读取文件

原来在一本书上看到过,从多个tfrecord文件中读取数据的方法,今天想用在网上找了一下,现在记录一下,免得自己以后忘记了又不好找, tfrecord_file_path = '/train/*.tfrecords’#train是存放tfrecord的文件夹 filename_queue = ...

2018-08-09 15:38:44

阅读数 1325

评论数 0

python画2.5维

今天想用python画一个像Matlab里面的2.5维的图片,输入一个二维列表,将列表表示的图片画出,找了半天没找到2.5维,实际很简单: import matplotlib.pyplot as plt data = []# 表示希望画的列表 plt.imshow(data) plt.sho...

2018-08-07 15:42:11

阅读数 225

评论数 0

全组合的递归实现C++

 今天刷题碰到一个要用到全组合的问题,下面的代码是用递归写的,留着以后复习一下 #include<iostream> using namespace std; void full_combine(int *data,int cur,int len) ...

2018-08-03 21:02:15

阅读数 621

评论数 0

tensorflow训练deeplab v3+调用train时候报错:ImportError: No module named 'deeplab'

照着网上的大神CityScapes的数据集训练deeplab V3+的时候,在调用train.py的时候报错ImportError: No module named 'deeplab',解决方案是在train文件的开始加如下几句话: import sys sys.path.append(&am...

2018-07-28 16:44:29

阅读数 2430

评论数 2

tensorflow生成deeplab v3+的tfrecord的时候报错:Failed to find all Cityscapes modules

在网上照着大神的博客用CityScapes的数据集训练deeplab V3+的时候,一步一步照着别人的方法弄,弄到生成tfrecord的时候突然报错:Failed to find all Cityscapes modules。这个错误是从csHelpers.py里面报出来的 就是因为from...

2018-07-28 15:23:03

阅读数 829

评论数 9

SSD论文的概括理解

论文题目:Single Shot MultiBox Detector 论文地址:http://arxiv.org/abs/1512.02325 首先展示一下SSD的结构图   我的感觉是SSD是在YOLO与faster的基础之上进行创新得到的一个新的网络,SSD与YOLO一样都是端到端...

2018-07-27 21:43:06

阅读数 190

评论数 0

YOLO2论文的概括理解

论文名称:YOLO9000: Better, Faster, Stronger 论文地址:https://arxiv.org/abs/1612.08242 在yolo所有的卷积层后面添加BN层,基网络采用darknet-19 采用anchor,最后一层卷积层的特征尺寸是13*13,每一个特征...

2018-07-27 21:21:57

阅读数 88

评论数 0

YOLO论文的概括理解

论文题目:You Only Look Once: Unified, Real-Time Object Detection 论文地址:https://arxiv.org/abs/1506.02640 RCNN系列都是先生成候选区域,在对候选区域进行分类回归,YOLO提出了一种不同方式,直接像...

2018-07-27 17:15:03

阅读数 110

评论数 0

Faster RCNN论文的概括理解

 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 论文地址:http://arxiv.org/abs/1506.01497 虽然fast RCNN对每张图片只提取一次特征,但...

2018-07-27 16:47:27

阅读数 98

评论数 0

提示
确定要删除当前文章?
取消 删除