【opencv小案例-对象计数】关于粘连对象的计数

处理方法
1、二值分割(整体threshold只有一个阈值)
2、形态学处理
3、距离变换
4、阈值化二值分割(局部AdaptiveThreshold每个区域都有一个阈值)
5、连通区域计数
原图
在这里插入图片描述

代码

# include<opencv2\opencv.hpp>
# include <iostream>
# include <math.h>

using namespace std;
using namespace cv;
int main(int argc, char** argv) {
	Mat src, dst,gray_src,binary;
	src = imread("E:/tuku/case005.png");
	if (src.empty()) {
		cout << "can't find this picture...";
		return -1;
	}
	imshow("input", src);
	cvtColor(src, gray_src, COLOR_BGR2GRAY);

	//照片不够清楚  所以加了一个掩模操作
	//必要的时候还可以加入拉普拉多算子增强边缘
	Mat kernel1 = (Mat_<char>(3, 3) << 0, -1, 0, -1, 5, -1, 0, -1, 0);
	filter2D(gray_src, gray_src, gray_src.depth(), kernel1);
	//二值分割
	threshold(gray_src, binary, 0, 255, THRESH_BINARY | THRESH_TRIANGLE); //颜色单一时,使用THRESH_TRIANGLE比OTSU好
	imshow("binary image", binary);

	//形态学操作
	Mat kernel = getStructuringElement(MORPH_RECT, Size(3, 3), Point(-1, -1));
	dilate(binary, binary, kernel);
	imshow("dilate image", binary);

	//距离变换
	Mat dist;
	bitwise_not(binary, binary);//取反
	distanceTransform(binary, dist, DIST_L2, 3);//(点到零像素点的距离)
	normalize(dist, dist, 0, 1.0, NORM_MINMAX);
	imshow("dist image", dist);
	
	//阈值化二值分割
	Mat dist_8u;
	dist.convertTo(dist_8u, CV_8U);
	adaptiveThreshold(dist_8u, dist_8u, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 85, 0.0);//使用这个比threshold效果好,
	//腐蚀,使断开的区域连通
	kernel = getStructuringElement(MORPH_RECT, Size(7, 7), Point(-1, -1));//Size的大小可以自己调试一下
	dilate(dist_8u, dist_8u, kernel,Point(-1,-1),2);
	imshow("dist_8u image", dist_8u);

	//连通区域计数
	vector<vector<Point>>contours;
	findContours(dist_8u, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);

	//draw reslut
	Mat markers = Mat::zeros(src.size(), CV_8UC3);
	RNG rng(12345);
	for (size_t t = 0; t < contours.size(); t++) {
		drawContours(markers, contours, t, Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)), -1,
			8, Mat());
	}
	printf("number of corners:%d\n", contours.size());
	imshow("Final results", markers);

	waitKey(0);
	return 0;
}

效果图

在这里插入图片描述在这里插入图片描述在这里插入图片描述

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值