TensorFlow Object Detction 配置笔记

前期准备工具:1、protoc-3.4.0-win32(一定要下载3.4.0的,不然后面会报错); 2、Object Detection 1、首先下载protoc工具,下载地址为:https://github.com/protocolbuffers/protobuf/releases/tag/v3...

2019-05-26 20:29:35

阅读数 12

评论数 0

OpenCv-C++-03-高斯混合模型GMM

121

2019-05-21 15:46:08

阅读数 5

评论数 0

使用Opencv在基于SSD-MobileNet迁移学习中生成pbtxt文件遇到的问题及解决方案

在迁移学习训练后,如果要是用opencv调用pb模型,需要的“佐料”是pbtxt文件,这个文件必不可少。 我在使用opencv4.0.0中的tf_text_graph_ssd.py(文件路径在“D:\opencv\opencv_4.0.0\sources\samples\dnn”)生成pbtxt文...

2019-05-14 18:04:35

阅读数 177

评论数 13

OpenCv-Python-Tesseract验证码识别

Tesseract-ocr是一个文本识别的引擎,它能识别英文文本和数字文本,准确率极高,关于中文文本需要下载中文文本的文件进行加载,它也支持用户自定义训练文本。相比于机器学习或深度学习识别文本文字,tesseract方便小巧,对计算机性能要求不高,对样本量的要求也不高。 本文不对任何文本做任何训练...

2019-04-20 19:32:55

阅读数 29

评论数 0

OpenCv-C++-02-KMeans-图像分割

关于KMeans上一篇文章有提到,也用了一些随机点进行数据分类,那么图像呢?图像也是一堆数据,我们只需要把1图像转变为一组数据即可进行数据分类,然后重新显示在图像上,这就是图像分割。 代码部分与上一章文章没多大区别,只需稍作改动即可: #include<opencv2/opencv....

2019-04-15 21:09:17

阅读数 23

评论数 0

OpenCv-C++-01-KMeans-聚类

112121

2019-04-15 18:26:01

阅读数 36

评论数 0

TensorFlow-深度学习-13-LSTM递归神经网络

提到LSTM,我们就应该想到RNN,LSTM是RNN的一种改进,是RNN的变种。比如前几篇文章中讲的Mnist数据集分类,都是一张图片一张图片的输入,然后进行分类,这仅仅是对于图像来说,那么,对于语音或一串文字来说怎么做?这个就需要网络具有记忆的功能,RNN和LSTM都有这种功能。 如果需要对语音...

2019-04-07 15:47:09

阅读数 27

评论数 0

TensorFlow-深度学习-12-训练模型保存与使用

有这么一种情况,如果说我训练了一个数据集,效果还不错,但总不能每次都要经过一次训练在拿来用吧,一次训练能达到上万次,对于普通电脑来说根本不可能训练,所以我们要把它保存成一个模型文件(检查点),用到的时候直接拿来用就好了。 保存模型文件很简单,只需要用下面2句话就行了: saver = ...

2019-03-24 16:07:41

阅读数 122

评论数 1

TensorFlow-深度学习-11-卷积神经网络(CNN)

我们在计算机中所看到的图像,在计算机中表示为一个个矩阵,一串串数字。在神经网络中,我们需要将这些数据在输入端reshape成一个1行n列的数组。通常我们使用的图片不会太小,否则特征点很容易丢失,可即便是一张28*28的图像(mnist手写数据集),在输入层也有784个神经元,更何况一个数据集少则几...

2019-03-24 15:50:31

阅读数 60

评论数 0

TensorFlow-深度学习-10-DropOut与多层神经网络

对于简单的3层人工神经网络,常用的激活函数很容易达到饱和度,比如sigmod,因为它很容易达到一个饱和度,导致整个训练终止。我之前在三层人工神经网络上加了一层,变成4层,然后进行训练,但是发现,训练的结果并没有什么变化,这是因为4层人工神经网络可能已经存在了过拟合的现象。 其实经过大量研究人员的...

2019-03-22 16:31:04

阅读数 74

评论数 0

TensorFlow-深度学习-08-人工神经网络(ANN)-多层感知器(MLP)

本文与TensorFlow-深度学习-03-梯度下降(反向传播–BP)其实没有什么差别,主要差别在于使用了softmax函数进行梯度下降求解。 实例: import tensorflow as tf from tensorflow.examples.tutorials.mnist import i...

2019-03-21 20:34:19

阅读数 78

评论数 0

TensorFlow-深度学习-07-基于逻辑回归预测二元分类

现在我这里有一份数据集,数据量很少,只有不到200行,里面有0和1的标签,很适合做二分类,数据集如下: LOW,AGE,LWT,RACE,SMOKE,PTL,HT,UI,BWT 1,28,113,1,1,1,0,1,709 1,29,130,0,0,0,0,1,1021 1,34,187,...

2019-03-20 21:17:39

阅读数 94

评论数 0

TensorFlow-深度学习-09-激活与损失函数

一、激活函数 1、常见激活函数: 【1】 图像: 上图的这个函数很明显就能看出来很适合做二分类问题,1代表一类,0代表另一类,没什么好解释的。 【2】 图像: 这个函数比较常见,从上图中可以看到,当样本数据被归纳到1和-1以外的区间时,函数梯度开始变得平缓,这时学习率...

2019-03-20 20:15:25

阅读数 31

评论数 0

TensorFlow-深度学习-06-梯度下降求解简单的逻辑回归

首先谈谈softmax这个函数: Softmax 在机器学习和深度学习中有着非常广泛的应用。尤其在处理多分类(C > 2)问题,分类器最后的输出单元需要Softmax 函数进行数值处理。关于Softmax 函数的定义如下所示: ...

2019-03-20 16:02:42

阅读数 51

评论数 0

TensorFlow-深度学习-05-计算图

什么是计算图? 基于TensorFlow这个编程系统中的每一个计算都是计算图上的一个节点,而节点与节点之间的连线则代表计算之间的依赖关系。 以一个最简化的计算图来说明: 上图中,a,b代表一个节点,add也是一个节点,只是它参与了计算的工作。而这个简单的运算,我们需要在一个图中运行,而要想使用...

2019-03-18 21:25:09

阅读数 41

评论数 0

TensorFlow-深度学习-04-梯度下降求解线性回归

线性回归,说白了就是求一条线性方程,能够最大限度的把坐标图上的每个点包括到,或者让这些点能够更加接近这条直线,本节将使用梯度下降的方法求这条解线性方程。 有数据集的朋友可以使用pandas读取数据,这里我就不读取数据集了,有关于数据集的读取参考:机器学习——Pandas库 1、读取数据集 因为我这...

2019-03-18 18:15:52

阅读数 37

评论数 0

TensorFlow-深度学习-03-梯度下降(反向传播--BP)

反向传播(BP)算法: 稍微明白神经网络是怎么回事的朋友都知道,神经网络分为三大层,输入层(input)、隐藏层(hidden)、输出层(output)。BP反向传播算法也就是多了上图中的红色箭头而已。当我们预测的值与真实值之间的差异较大时,我们就把这种差异附加到输入层与隐藏层之间的权重W和...

2019-03-18 14:51:04

阅读数 74

评论数 0

TensorFlow-深度学习-02-Feed与Fetch

Feed: feed_dict={x:[[1,2],[3,4]],y:[[5],[6]]} 上面的feed_dict的作用是什么?在机器学习中,经常听别人说到要把数据给喂进去。怎么喂进去,这就要使用feed_dict={x:input_x,y:input_y}把数据喂进去,喂进去的数据可以...

2019-03-17 13:55:07

阅读数 58

评论数 0

TensorFlow-深度学习-01-常量,变量,操作数与占位符

12121

2019-03-16 20:55:50

阅读数 59

评论数 0

OpenCv_C++-PCA原理与应用

主成分分析PCA,最主要在数据处理中用来降维,比如说我们有1000组数据,每组数据有1000个样本,我们通过分析每组数据中的主要特征,剔除那些不必要的特征,使得数据的维度有所减少,以加快计算机计算的速度。进行PCA变化时主要有以下特征: 1、主成分不变; 2、有细微损失; 3、高维数据到低维...

2019-03-05 11:40:43

阅读数 68

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭