厘清逻辑回归中的损失函数与代价函数

在初步接触深度学习的过程中,最先接触到的应该就是逻辑回归,在逻辑回归中有两个非常重要的函数,损失函数与代价函数,今天带大家梳理下这两者之间的关系。

首先我们先回顾一下逻辑回归中的输出函数:

函数输入 z = w^{T}x + b

经过激活函数:  \small \sigma (z)=\frac{1}{1+e^{-x}}

输出预测值 \widehat{y}^{(i)}  = σ(z) = σ( w^{T}x^{^{(i)}} + b)       

    

对于给定样本{(x^{(1)},y^{(1)}) ...(x^{(i)},y^{(i)})},我们想要的是预测值 \widehat{y}^{(i)} 接近样本真实值 y^{(i)} ,

然后我们来解释下什么是损失函数与代价函数,以及塔门到底用来做什么。

损失函数又叫做误差函数,用来衡量预测值与实际值的偏离程度,我们在逻辑回归中定义了损失函数:

L( \widehat{y} ,y) = -ylog(\widehat{y}​​​​​​​) - (1-y)log(1-\widehat{y}​​​​​​​)

对于逻辑回归的这个损失函数,它代表了与实际值的偏离情况,我们应该让它尽可能的小。

当y = 1时,损失函数L =  -ylog(\widehat{y}​​​​​​​)图像如下 ,如果想让L尽可能小,那么\widehat{y}​​​​​​​要尽可能大,因为sigmoid函数取值[0,1],所以\widehat{y}​​​​​​​需要无限接近与1

当y = 0时,损失函数L =  - (1-y)log(1-\widehat{y}​​​​​​​)图像如下,如果想让L尽可能小,那么\widehat{y}​​​​​​​要尽可能小,因为sigmoid函数取值[0,1],所以\widehat{y}​​​​​​​需要无限接近与0

那么我们如何控制输出预测值\widehat{y}的大小呢,回到他的表达式: \widehat{y}^{(i)}​​​​​​​  = σ(z) = σ( w^{T}x^{^{(i)}} + b)   

可以看出我们通过不断调整参数w与b的值来控制输出\widehat{y}​​​​​​​的大小

损失函数是在单个训练样本中定义的,它衡量的是算法在单个训练样本中的表现情况,为了衡量算法在全部训练样本上的表现情况,我们定义了算法的代价函数

 \small J(w,b)=\frac{1}{m}\sum_{i=1}^{m}L(\widehat{y}^{(i)},{y}^{(i)})=\frac{1}{m}\sum_{i=1}^{m}(-{y}^{(i)}log\widehat{y}^{(i)}-(1-{y}^{(i)})log(1-\widehat{y}^{(i)}))​​

损失函数是在单个样本中定义出来的,而代价函数是所有样本的代价评估。

在训练逻辑回归模型的时候,我们以让代价函数降到最低为导向,不断地优化参数w和b,这便是我们训练模型的过程。由此表明逻辑回归也可以看做是一个非常小的神经网络。调整参数的方法我们最为熟知的有梯度下降法,此篇我们不再详细说明。

本篇仅代表笔者个人理解,如有错误之处,敬请谅解。

 

  • 3
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值